10,067 research outputs found

    Verifying continuous-variable entanglement in finite spaces

    Full text link
    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite dimensional subspaces. Hence, entanglement is a finite dimensional property. A generalization for multipartite quantum states is also given.Comment: 4 page

    Particle alignments and shape change in 66^{66}Ge and 68^{68}Ge

    Full text link
    The structure of the N≈ZN \approx Z nuclei 66^{66}Ge and 68^{68}Ge is studied by the shell model on a spherical basis. The calculations with an extended P+QQP+QQ Hamiltonian in the configuration space (2p3/22p_{3/2}, 1f5/21f_{5/2}, 2p1/22p_{1/2}, 1g9/21g_{9/2}) succeed in reproducing experimental energy levels, moments of inertia and QQ moments in Ge isotopes. Using the reliable wave functions, this paper investigates particle alignments and nuclear shapes in 66^{66}Ge and 68^{68}Ge. It is shown that structural changes in the four sequences of the positive- and negative-parity yrast states with even JJ and odd JJ are caused by various types of particle alignments in the g9/2g_{9/2} orbit. The nuclear shape is investigated by calculating spectroscopic QQ moments of the first and second 2+2^+ states, and moreover the triaxiality is examined by the constrained Hatree-Fock method. The changes of the first band crossing and the nuclear deformation depending on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    Gauge Orbit Types for Theories with Classical Compact Gauge Group

    Full text link
    We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n)Sp(n) over a closed, simply connected manifold of dimension 4. Complemented with earlier results on U(n) and SU(n) this completes the classification of the orbit types for all classical compact gauge groups over such space-time manifolds. On the way we derive the classification of principal bundles with structure group SO(n) over these manifolds and the Howe subgroups of SO(n).Comment: 57 page

    Fluctuation Analysis of Human Electroencephalogram

    Get PDF
    The scaling behaviors of the human electroencephalogram (EEG) time series are studied using detrended fluctuation analysis. Two scaling regions are found in nearly every channel for all subjects examined. The scatter plot of the scaling exponents for all channels (up to 129) reveals the complicated structure of a subject's brain activity. Moment analyses are performed to extract the gross features of all the scaling exponents, and another universal scaling behavior is identified. A one-parameter description is found to characterize the fluctuation properties of the nonlinear behaviors of the brain dynamics.Comment: 4 pages in RevTeX + 6 figures in ep

    Characterizing entanglement with geometric entanglement witnesses

    Full text link
    We show how to detect entangled, bound entangled, and separable bipartite quantum states of arbitrary dimension and mixedness using geometric entanglement witnesses. These witnesses are constructed using properties of the Hilbert-Schmidt geometry and can be shifted along parameterized lines. The involved conditions are simplified using Bloch decompositions of operators and states. As an example we determine the three different types of states for a family of two-qutrit states that is part of the "magic simplex", i.e. the set of Bell-state mixtures of arbitrary dimension.Comment: 19 pages, 4 figures, some typos and notational errors corrected. To be published in J. Phys. A: Math. Theo

    A note on the realignment criterion

    Get PDF
    For a quantum state in a bipartite system represented as a density matrix, researchers used the realignment matrix and functions on its singular values to study the separability of the quantum state. We obtain bounds for elementary symmetric functions of singular values of realignment matrices. This answers some open problems proposed by Lupo, Aniello, and Scardicchio. As a consequence, we show that the proposed scheme by these authors for testing separability would not work if the two subsystems of the bipartite system have the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and Theoretica

    Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields

    Full text link
    We present a method for the simultaneous observation of heteronuclear multi-quantum coherences (up to the 3rd order), which give an additional degree of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical shift is negligible. The nonequilibrium spin state is generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY allows a quantitative analysis of homo- and heteronuclei quantum coherences

    The Uniqueness Theorem for Entanglement Measures

    Full text link
    We explore and develop the mathematics of the theory of entanglement measures. After a careful review and analysis of definitions, of preliminary results, and of connections between conditions on entanglement measures, we prove a sharpened version of a uniqueness theorem which gives necessary and sufficient conditions for an entanglement measure to coincide with the reduced von Neumann entropy on pure states. We also prove several versions of a theorem on extreme entanglement measures in the case of mixed states. We analyse properties of the asymptotic regularization of entanglement measures proving, for example, convexity for the entanglement cost and for the regularized relative entropy of entanglement.Comment: 22 pages, LaTeX, version accepted by J. Math. Phy
    • 

    corecore