2,380 research outputs found

    Extensive chronic xanthogranulomatous intra-abdominal inflammation due to Mycoplasma hominis mimicking a malignancy: a case report

    Get PDF
    Introduction: While infectious peritonitis is a common occurrence in patients with liver cirrhosis, Mycoplasma is rarely identified as a causative agent. Case presentation: We report the case of a 43-year-old Caucasian woman presenting with an extensive abdominal conglomerate tumor mimicking malignancy. A histologic specimen showed a xanthogranulomatous inflammation. Subsequently, Mycoplasma hominis was identified as the specific causative infectious agent using a broad-range (eubacterial) polymerase chain reaction. To the best of our knowledge, this is the first reported case of an intra-abdominal Mycoplasma infection presenting as a conglomerate tumor. Conclusion: An unusual presentation of an inflammatory process in the abdomen or an insufficient response to conventional therapy should prompt clinicians to consider atypical infectious agents in the differential diagnosis. This case illustrates the potential of newer diagnostic methods, since certain fastidious microorganisms may not be diagnosed and treated appropriately using conventional means

    Phonon Sidebands in Transition Metal Dichalcogenides

    Get PDF
    Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient exciton-phonon scattering couples bright and dark states and gives rise to an asymmetric excitonic line shape. The observed asymmetry can be traced back to phonon-induced sidebands that are accompanied by a polaron redshift. We present a joint theory-experiment study investigating the microscopic origin of these sidebands in different TMD materials taking into account intra- and intervalley scattering channels opened by optical and acoustic phonons. The gained insights contribute to a better understanding of the optical fingerprint of these technologically promising nanomaterials

    Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Luteolin, a plant derived flavonoid, exerts a variety of pharmacological activities and anti-oxidant properties associated with its capacity to scavenge oxygen and nitrogen species. Luteolin also shows potent anti-inflammatory activities by inhibiting nuclear factor kappa B (NFkB) signaling in immune cells. To better understand the immuno-modulatory effects of this important flavonoid, we performed a genome-wide expression analysis in pro-inflammatory challenged microglia treated with luteolin and conducted a phenotypic and functional characterization.</p> <p>Methods</p> <p>Resting and LPS-activated BV-2 microglia were treated with luteolin in various concentrations and mRNA levels of pro-inflammatory markers were determined. DNA microarray experiments and bioinformatic data mining were performed to capture global transcriptomic changes following luteolin stimulation of microglia. Extensive qRT-PCR analyses were carried out for an independent confirmation of newly identified luteolin-regulated transcripts. The activation state of luteolin-treated microglia was assessed by morphological characterization. Microglia-mediated neurotoxicity was assessed by quantifying secreted nitric oxide levels and apoptosis of 661W photoreceptors cultured in microglia-conditioned medium.</p> <p>Results</p> <p>Luteolin dose-dependently suppressed pro-inflammatory marker expression in LPS-activated microglia and triggered global changes in the microglial transcriptome with more than 50 differentially expressed transcripts. Pro-inflammatory and pro-apoptotic gene expression was effectively blocked by luteolin. In contrast, mRNA levels of genes related to anti-oxidant metabolism, phagocytic uptake, ramification, and chemotaxis were significantly induced. Luteolin treatment had a major effect on microglial morphology leading to ramification of formerly amoeboid cells associated with the formation of long filopodia. When co-incubated with luteolin, LPS-activated microglia showed strongly reduced NO secretion and significantly decreased neurotoxicity on 661W photoreceptor cultures.</p> <p>Conclusions</p> <p>Our findings confirm the inhibitory effects of luteolin on pro-inflammatory cytokine expression in microglia. Moreover, our transcriptomic data suggest that this flavonoid is a potent modulator of microglial activation and affects several signaling pathways leading to a unique phenotype with anti-inflammatory, anti-oxidative, and neuroprotective characteristics. With the identification of several novel luteolin-regulated genes, our findings provide a molecular basis to understand the versatile effects of luteolin on microglial homeostasis. The data also suggest that luteolin could be a promising candidate to develop immuno-modulatory and neuroprotective therapies for the treatment of neurodegenerative disorders.</p
    • …
    corecore