1,925 research outputs found

    Receipt from E. Rudnick to Mr. Berien

    Get PDF
    https://digitalcommons.salve.edu/goelet-new-york/1061/thumbnail.jp

    On function spaces on symmetric spaces

    No full text

    Anderson transition of the plasma oscillations of 1D disordered Wigner lattices

    Full text link
    We report the existence of a localization-delocalization transition in the classical plasma modes of a one dimensional Wigner Crystal with a white noise potential environment at T=0. Finite size scaling analysis reveals a divergence of the localization length at a critical eigenfrequency. Further scaling analysis indicates power law behavior of the critical frequency in terms of the relative interaction strength of the charges. A heuristic argument for this scaling behavior is consistent with the numerical results. Additionally, we explore a particular realization of random-bond disorder in a one dimensional Wigner lattice in which all of the collective modes are observed to be localized.Comment: 4 pages, 3 figures, Typo for the localization length corrected. Should read 1 / \n

    The effective potential, critical point scaling and the renormalization group

    Full text link
    The desirability of evaluating the effective potential in field theories near a phase transition has been recognized in a number of different areas. We show that recent Monte Carlo simulations for the probability distribution for the order parameter in an equilibrium Ising system, when combined with low-order renormalization group results for an ordinary ϕ4\phi^4 system, can be used to extract the effective potential. All scaling features are included in the process.Comment: REVTEX file, 22 pages, three figures, submitted to Phys. Rev.

    A Radio and X-ray Study of the Merging Cluster A2319

    Full text link
    A2319 is a massive, merging galaxy cluster with a previously detected radio halo that roughly follows the X-ray emitting gas. We present the results from recent observations of A2319 at 20 cm with the Jansky Very Large Array (VLA) and a re-analysis of the X-ray observations from XMM-Newton, to investigate the interactions between the thermal and nonthermal components of the ICM . We confirm previous reports of an X-ray cold front, and report on the discovery of a distinct core to the radio halo, 800 kpc in extent, that is strikingly similar in morphology to the X-ray emission, and drops sharply in brightness at the cold front. We detect additional radio emission trailing off from the core, which blends smoothly into the 2 Mpc halo detected with the Green Bank Telescope (GBT; Farnsworth et al., 2013). We speculate on the possible mechanisms for such a two-component radio halo, with sloshing playing a dominant role in the core. By directly comparing the X-ray and radio emission, we find that a hadronic origin for the cosmic ray electrons responsible for the radio halo would require a magnetic field and/or cosmic ray proton distribution that increases with radial distance from the cluster center, and is therefore disfavored.Comment: 9 pages, 5 figures. Submitted to MNRA

    Organized condensation of worm-like chains

    Full text link
    We present results relevant to the equilibrium organization of DNA strands of arbitrary length interacting with a spherical organizing center, suggestive of DNA-histone complexation in nucleosomes. We obtain a rich phase diagram in which a wrapping state is transformed into a complex multi-leafed, rosette structure as the adhesion energy is reduced. The statistical mechanics of the "melting" of a rosette can be mapped into an exactly soluble one-dimensional many-body problem.Comment: 15 pages, 2 figures in a pdf fil

    Quantum chaos: an introduction via chains of interacting spins-1/2

    Full text link
    We introduce aspects of quantum chaos by analyzing the eigenvalues and the eigenstates of quantum many-body systems. The properties of quantum systems whose classical counterparts are chaotic differ from those whose classical counterparts are not chaotic. The spectrum of the first exhibits repulsion of the energy levels. This is one of the main signatures of quantum chaos. We show how level repulsion develops in one-dimensional systems of interacting spins 1/2 which are devoid of random elements and involve only two-body interactions. In addition to the statistics of the eigenvalues, we analyze how the structure of the eigenstates may indicate chaos. The programs used to obtain the data are available online.Comment: 7 pages, 3 figure

    Thinning of superfluid films below the critical point

    Full text link
    Experiments on 4^4He films reveal an attractive Casimir-like force at the bulk λ\lambda-point, and in the superfluid regime. Previous work has explained the magnitude of this force at the λ\lambda transition and deep in the superfluid region but not the substantial attractive force immediately below the λ\lambda-point. Utilizing a simple mean-field calculation renormalized by critical fluctuations we obtain an effective Casimir force that is qualitatively consistent with the scaling function ϑ\vartheta obtained by collapse of experimental data.Comment: 4 page

    Potential vorticity structure in the North Atlantic western boundary current from underwater glider observations

    Get PDF
    Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 327–348, doi:10.1175/JPO-D-15-0112.1.Potential vorticity structure in two segments of the North Atlantic’s western boundary current is examined using concurrent, high-resolution measurements of hydrography and velocity from gliders. Spray gliders occupied 40 transects across the Loop Current in the Gulf of Mexico and 11 transects across the Gulf Stream downstream of Cape Hatteras. Cross-stream distributions of the Ertel potential vorticity and its components are calculated for each transect under the assumptions that all flow is in the direction of measured vertically averaged currents and that the flow is geostrophic. Mean cross-stream distributions of hydrographic properties, potential vorticity, and alongstream velocity are calculated for both the Loop Current and the detached Gulf Stream in both depth and density coordinates. Differences between these mean transects highlight the downstream changes in western boundary current structure. As the current increases its transport downstream, upper-layer potential vorticity is generally reduced because of the combined effects of increased anticyclonic relative vorticity, reduced stratification, and increased cross-stream density gradients. The only exception is within the 20-km-wide cyclonic flank of the Gulf Stream, where intense cyclonic relative vorticity results in more positive potential vorticity than in the Loop Current. Cross-stream gradients of mean potential vorticity satisfy necessary conditions for both barotropic and baroclinic instability within the western boundary current. Instances of very low or negative potential vorticity, which predispose the flow to various overturning instabilities, are observed in individual transects across both the Loop Current and the Gulf Stream.Glider operations in the Gulf Stream were supported by the National Science Foundation under Grant OCE-0220769. Glider operations in the Gulf of Mexico were supported by BP. R.E.T. was supported by the Penzance Endowed Fund in Support of Assistant Scientists and the Independent Research and Development Program at WHOI.2016-07-0
    corecore