13 research outputs found
Correlations around an interface
We compute one-loop correlation functions for the fluctuations of an
interface using a field theory model. We obtain them from Feynman diagrams
drawn with a propagator which is the inverse of the Hamiltonian of a
Poschl-Teller problem. We derive an expression for the propagator in terms of
elementary functions, show that it corresponds to the usual spectral sum, and
use it to calculate quantities such as the surface tension and interface
profile in two and three spatial dimensions. The three-dimensional quantities
are rederived in a simple, unified manner, whereas those in two dimensions
extend the existing literature, and are applicable to thin films. In addition,
we compute the one-loop self-energy, which may be extracted from experiment, or
from Monte Carlo simulations. Our results may be applied in various scenarios,
which include fluctuations around topological defects in cosmology,
supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic
systems, interfaces separating Bose-Einstein condensates, and interfaces in
binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure