27 research outputs found

    Hydrodynamics of Spatially Ordered Superfluids

    Full text link
    We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication in Phys. Rev.

    Theory of finite temperature crossovers near quantum critical points close to, or above, their upper-critical dimension

    Full text link
    A systematic method for the computation of finite temperature (TT) crossover functions near quantum critical points close to, or above, their upper-critical dimension is devised. We describe the physics of the various regions in the TT and critical tuning parameter (tt) plane. The quantum critical point is at T=0T=0, t=0t=0, and in many cases there is a line of finite temperature transitions at T=Tc(t)T = T_c (t), t<0t < 0 with Tc(0)=0T_c (0) = 0. For the relativistic, nn-component ϕ4\phi^4 continuum quantum field theory (which describes lattice quantum rotor (n2n \geq 2) and transverse field Ising (n=1n=1) models) the upper critical dimension is d=3d=3, and for d<3d<3, ϵ=3d\epsilon=3-d is the control parameter over the entire phase diagram. In the region TTc(t)Tc(t)|T - T_c (t)| \ll T_c (t), we obtain an ϵ\epsilon expansion for coupling constants which then are input as arguments of known {\em classical, tricritical,} crossover functions. In the high TT region of the continuum theory, an expansion in integer powers of ϵ\sqrt{\epsilon}, modulo powers of lnϵ\ln \epsilon, holds for all thermodynamic observables, static correlators, and dynamic properties at all Matsubara frequencies; for the imaginary part of correlators at real frequencies (ω\omega), the perturbative ϵ\sqrt{\epsilon} expansion describes quantum relaxation at ωkBT\hbar \omega \sim k_B T or larger, but fails for ωϵkBT\hbar \omega \sim \sqrt{\epsilon} k_B T or smaller. An important principle, underlying the whole calculation, is the analyticity of all observables as functions of tt at t=0t=0, for T>0T>0; indeed, analytic continuation in tt is used to obtain results in a portion of the phase diagram. Our method also applies to a large class of other quantum critical points and their associated continuum quantum field theories.Comment: 36 pages, 4 eps figure

    Explicit formulae in probability and in statistical physics

    Get PDF
    We consider two aspects of Marc Yor's work that have had an impact in statistical physics: firstly, his results on the windings of planar Brownian motion and their implications for the study of polymers; secondly, his theory of exponential functionals of Levy processes and its connections with disordered systems. Particular emphasis is placed on techniques leading to explicit calculations.Comment: 14 pages, 2 figures. To appear in Seminaire de Probabilites, Special Issue Marc Yo
    corecore