27 research outputs found
Hydrodynamics of Spatially Ordered Superfluids
We derive the hydrodynamic equations for the supersolid and superhexatic
phases of a neutral two-dimensional Bose fluid. We find, assuming that the
normal part of the fluid is clamped to an underlying substrate, that both
phases can sustain third-sound modes and that in the supersolid phase there are
additional modes due to the superfluid motion of point defects (vacancies and
interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication
in Phys. Rev.
Theory of finite temperature crossovers near quantum critical points close to, or above, their upper-critical dimension
A systematic method for the computation of finite temperature () crossover
functions near quantum critical points close to, or above, their upper-critical
dimension is devised. We describe the physics of the various regions in the
and critical tuning parameter () plane. The quantum critical point is at
, , and in many cases there is a line of finite temperature
transitions at , with . For the relativistic,
-component continuum quantum field theory (which describes lattice
quantum rotor () and transverse field Ising () models) the upper
critical dimension is , and for , is the control
parameter over the entire phase diagram. In the region , we obtain an expansion for coupling constants which then are
input as arguments of known {\em classical, tricritical,} crossover functions.
In the high region of the continuum theory, an expansion in integer powers
of , modulo powers of , holds for all
thermodynamic observables, static correlators, and dynamic properties at all
Matsubara frequencies; for the imaginary part of correlators at real
frequencies (), the perturbative expansion describes
quantum relaxation at or larger, but fails for or smaller. An important principle,
underlying the whole calculation, is the analyticity of all observables as
functions of at , for ; indeed, analytic continuation in is
used to obtain results in a portion of the phase diagram. Our method also
applies to a large class of other quantum critical points and their associated
continuum quantum field theories.Comment: 36 pages, 4 eps figure
Explicit formulae in probability and in statistical physics
We consider two aspects of Marc Yor's work that have had an impact in
statistical physics: firstly, his results on the windings of planar Brownian
motion and their implications for the study of polymers; secondly, his theory
of exponential functionals of Levy processes and its connections with
disordered systems. Particular emphasis is placed on techniques leading to
explicit calculations.Comment: 14 pages, 2 figures. To appear in Seminaire de Probabilites, Special
Issue Marc Yo