97 research outputs found

    Quantum magneto-oscillations in a two-dimensional Fermi liquid

    Full text link
    Quantum magneto-oscillations provide a powerfull tool for quantifying Fermi-liquid parameters of metals. In particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a non-zero magnetic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in 3D but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.Comment: 4 pages, 1 figur

    Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells

    Get PDF
    Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant precursor B-lineage leukemic patients. Here, we show that prednisolone resistance is associated with increased glucose consumption and that inhibition of glycolysis sensitizes prednisolone-resistant ALL cell lines to glucocorticoids. Treatment of prednisolone-resistant Jurkat and Molt4 cells with 2-deoxy-D-glucose (2-DG), lonidamine (LND), or3-bromopyruvate (3-BrPA) increased the in vitro sensitivity to glucocorticoids, while treatment of the prednisolone-sensitive cell lines Tom-1 and RS4; 11 did not influence drug cyto-toxicity. This sensitizing effect of the glycolysis inhibitors in glucocorticoid-resistant ALL cells was not found for other classes of antileukemic drugs (ie, vincris-tine and daunorubicin). Moreover, down-regulation of the expression of GAPDH by RNA interference also sensitized to prednisolone, comparable with treatment with glycolytic inhibitors. Importantly, the ability of 2-DG to reverse glucocorticoid resistance was not limited to cell lines, but was also observed in isolated primary ALL cells from patients. Together, these findings indicate the importance of the glycolytic pathway in glucocorticoid resistance in ALL and suggest that targeting glycolysis is a viable strategy for modulating prednisolone resistance in ALL

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Very Singular Diffusion Equations-Second and Fourth Order Problems

    Get PDF
    This paper studies singular diffusion equations whose diffusion effect is so strong that the speed of evolution becomes a nonlocal quantity. Typical examples include the total variation flow as well as crystalline flow which are formally of second order. This paper includes fourth order models which are less studied compared with second order models. A typical example of this model is an H−1 gradient flow of total variation. It turns out that such a flow is quite different from the second order total variation flow. For example, we prove that the solution may instantaneously develop jump discontinuity for the fourth order total variation flow by giving an explicit example

    ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer

    Get PDF
    Inactivating mutations in LKB1/STK11 are present in roughly 20% of nonsmall cell lung cancers (NSCLC) and portend poor response to anti-PD-1 immunotherapy. Unexpectedly, we found that LKB1 deficiency correlated with elevated tumor mutational burden (TMB) in NSCLCs from nonsmokers and genetically engineered mouse models, despite the frequent association between high-TMB and anti-PD-1 treatment efficacy. However, LKB1 deficiency also suppressed antigen processing and presentation, which are associated with compromised immunoproteasome activity and increased autophagic flux. Immunoproteasome activity and antigen presentation were restored by inhibiting autophagy through targeting the ATG1/ULK1 pathway. Accordingly, ULK1 inhibition synergized with PD-1 antibody blockade, provoking effector T-cell expansion and tumor regression in Lkb1-mutant tumor models. This study reveals an interplay between the immunoproteasome and autophagic catabolism in antigen processing and immune recognition, and proposes the therapeutic potential of dual ULK1 and PD-1 inhibition in LKB1-mutant NSCLC as a strategy to enhance antigen presentation and to promote antitumor immunity

    TERT expression and clinical outcome in pulmonary carcinoids

    Get PDF
    PURPOSE: The clinical course of pulmonary carcinoids ranges from indolent to fatal disease, suggesting that specific molecular alterations drive progression toward the fully malignant state. A similar spectrum of clinical phenotypes occurs in pediatric neuroblastoma, in which activation of telomerase reverse transcriptase (TERT) is decisive in determining the course of disease. We therefore investigated whether TERT expression defines the clinical fate of patients with pulmonary carcinoid. METHODS: TERT expression was examined by RNA sequencing in a test cohort and a validation cohort of pulmonary carcinoids (n = 88 and n = 105, respectively). A natural TERT expression cutoff was determined in the test cohort on the basis of the distribution of TERT expression, and its prognostic value was assessed by Kaplan-Meier survival estimates and multivariable analyses. Telomerase activity was validated by telomere repeat amplification protocol assay. RESULTS: Similar to neuroblastoma, TERT expression exhibited a bimodal distribution in pulmonary carcinoids, separating tumors into TERT-high and TERT-low subgroups. A natural TERT cutoff discriminated unfavorable from favorable clinical courses with high accuracy both in the test cohort (5-year overall survival [OS], 0.547 ± 0.132 v 1.0; P < .001) and the validation cohort (5-year OS, 0.788 ± 0.063 v 0.913 ± 0.048; P < .001). In line with these findings, telomerase activity was largely absent in TERT-low tumors, whereas it was readily detectable in TERT-high carcinoids. In multivariable analysis considering TERT expression, histology (typical v atypical carcinoid), and stage (≤IIA v ≥IIB), high TERT expression was an independent prognostic marker for poor survival, with a hazard ratio of 5.243 (95% CI, 1.943 to 14.148; P = .001). CONCLUSION: Our data demonstrate that high TERT expression defines clinically aggressive pulmonary carcinoids with fatal outcome, similar to neuroblastoma, indicating that activation of TERT may be a defining feature of lethal cancers

    Phase II randomised discontinuation trial of brivanib in patients with advanced solid tumours

    Get PDF
    Background: Brivanib is a selective inhibitor of vascular endothelial growth factor and fibroblast growth factor (FGF) signalling. We performed a phase II randomised discontinuation trial of brivanib in 7 tumour types (soft-tissue sarcomas [STS], ovarian cancer, breast cancer, pancreatic cancer, non-small-cell lung cancer [NSCLC], gastric/esophageal cancer and transitional cell carcinoma [TCC]). Patients and methods: During a 12-week open-label lead-in period, patients received brivanib 800 mg daily and were evaluated for FGF2 status by immunohistochemistry. Patients with stable disease at week 12 were randomised to brivanib or placebo. A study steering committee evaluated week 12 response to determine if enrolment in a tumour type would continue. The primary objective was progression-free survival (PFS) for brivanib versus placebo in patients with FGF2-positive tumours. Results: A total of 595 patients were treated, and stable disease was observed at the week 12 randomisation point in all tumour types. Closure decisions were made for breast cancer, pancreatic cancer, NSCLC, gastric cancer and TCC. Criteria for expansion were met for STS and ovarian cancer. In 53 randomised patients with STS and FGF2-positive tumours, the median PFS was 2.8 months for brivanib and 1.4 months for placebo (hazard ratio [HR]: 0.58, p = 0.08). For all randomised patients with sarcomas, the median PFS was 2.8 months (95% confidence interval [CI]: 1.4–4.0) for those treated with brivanib compared with 1.4 months (95% CI: 1.3–1.6) for placebo (HR = 0.64, 95% CI: 0.38–1.07; p = 0.09). In the 36 randomised patients with ovarian cancer and FGF2-positive tumours, the median PFS was 4.0 (95% CI: 2.6–4.2) months for brivanib and 2.0 months (95% CI: 1.2–2.7) for placebo (HR: 0.56, 95% CI: 0.26–1.22). For all randomised patients with ovarian cancer, the median PFS in those randomised to brivanib was 4.0 months (95% CI: 2.6–4.2) and was 2.0 months (95% CI: 1.2–2.7) in those randomised to placebo (HR = 0.54, 95% CI: 0.25–1.17; p = 0.11). Conclusion: Brivanib demonstrated activity in STS and ovarian cancer with an acceptable safety profile. FGF2 expression, as defined in the protocol, is not a predictive biomarker of the efficacy of brivanib

    ‘Intelligent’ in-vehicle intelligent transport systems: limiting behavioural adaptation through adaptive design

    Full text link
    corecore