320 research outputs found

    T-cell immune adaptor SKAP1 regulates the induction of collagen-induced arthritis in mice

    Get PDF
    SKAP1 is an immune cell adaptor that couples the T-cell receptor with the ‘inside-out’ signalling pathway for LFA-1 mediated adhesion in T-cells. A connection of SKAP1 to the regulation of an autoimmune disorder has not previously been reported. In this study, we show that Skap1-deficient (skap1-/-) mice are highly resistant to the induction of collagen-induced arthritis (CIA), both in terms of incidence or severity. Skap1-/- T-cells were characterised by a selective reduction in the presence IL-17+ (Th17) in response to CII peptide and a marked reduction of joint infiltrating T-cells in Skap1-/- mice. SKAP1 therefore represents a novel connection to Th17 producing T-cells and is new potential target in the therapeutic intervention in autoimmune and inflammatory diseases

    Small Molecule Inhibition of Glycogen Synthase Kinase 3 (GSK-3) Specifically Inhibits the Transcription of Inhibitory Co-Receptor LAG-3 for Enhanced Anti-Tumor Immunity

    Get PDF
    Immune checkpoint blockade using antibodies against negative co-receptors such as cytolytic T cell antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) has seen much success treating cancer. However, most patients are still not cured, underscoring the need for improved treatments and the possible development of small molecule inhibitors (SMIs) for improved immunotherapy. We previously showed that glycogen synthase kinase (GSK)- 3a/b is a central regulator of PD-1 expression, where GSK-3 inhibition down-regulates PD-1 and enhances CD8+ cytolytic T cell (CTL) function, reducing viral infections and tumor growth. Here, we demonstrate that GSK-3 also negatively regulates Lymphocyte Activation Gene-3 (LAG-3) expression on CD4+ and CD8+ T cells. GSK-3 SMIs are more effective than LAG-3 blockade alone in suppressing B16 melanoma growth, while their combination resulted in enhanced tumor clearance. This was linked to increased expression of the transcription factor, Tbet, which bound the LAG-3 promoter, inhibiting its transcription, and to increased granzyme B and interferong1 expression. Overall, we describe a small molecule approach to inhibit LAG-3, resulting in enhanced anti-tumor immunity

    Rab8 binding to immune cell-specific adaptor LAX facilitates formation of trans-Golgi network-proximal CTLA-4 vesicles for surface expression.

    Get PDF
    Despite playing a central role in tolerance, little is known regarding the mechanism by which intracellular CTLA-4 is shuttled from the trans-Golgi network to the surfaces of T cells. In this context, Ras-related GTPase Rab8 plays an important role in the intracellular transport, while we have previously shown that CTLA-4 binds to the immune cell adaptor TRIM in T cells. In this study, we demonstrate that CTLA-4 forms a multimeric complex comprised of TRIM and related LAX that in turn binds to GTP bound Rab8 for post-Golgi transport to the cell surface. LAX bound via its N terminus to active GTP-Rab8, as well as the cytoplasmic tail of CTLA-4. TRIM required LAX for binding to Rab8 in a complex. Wild-type LAX or its N terminus (residues 1 to 77) increased CTLA-4 surface expression, whereas small interfering RNAs of Rab8 or LAX or disruption of LAX/Rab8 binding reduced numbers of CTLA-4-containing vesicles and its coreceptor surface expression. LAX also promoted the polarization of CTLA-4 and the reorientation of the microtubule-organizing center to the site of T-cell receptor engagement. Our results identify a novel CTLA-4/TRIM/LAX/Rab8 effector complex in the transport of CTLA-4 to the surfaces of T cells

    Small molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy

    Get PDF
    The impact of PD-1 immune checkpoint therapy prompts exploration of other strategies to downregulate PD-1 for cancer therapy. We previously showed that the serine/threonine kinase, glycogen synthase kinase GSK-3α/β, is a central regulator of PD-1 transcription in CD8+ T cells. Here, we show that the use of small molecule inhibitors of GSK-3α/β (GSK-3i) to reduce pcdc1 (PD-1) transcription and expression was as effective as anti-PD-1 and PDL-1 blocking antibodies in the control of B16 melanoma, or EL4 lymphoma, in primary tumor and metastatic settings. Further, the conditional genetic deletion of GSK-3α/β reduced PD-1 expression on CD8+ T cells, and limited B16 pulmonary metastasis to the same degree as PD-1 gene deficiency. In each model, GSK-3i inhibited PD-1 expression on tumor infiltrating lymphocytes (TILs), while increasing Tbx21 (T-bet) transcription, and the expression of CD107a+ (LAMP1) and granzyme B (GZMB) on CD8+ T-cells. Lastly, the adoptive transfer of T-cells treated ex vivo with a GSK-3 inhibitor delayed the onset of EL4 lymphoma growth to a similar extent as anti-PD-1 pre-treatment. Overall, our findings show how GSK-3 inhibitors that downregulate PD-1 expression can enhance CD8+ T-cell function in cancer therapy to a similar degree as PD-1 blocking antibodies. Significance: These findings show how GSK-3 inhibitors that downregulate PD-1 expression can enhance CD8+ T-cell function in cancer therapy to a similar degree as PD-1 blocking antibodies, offering a next-generation approach in the design of immunotherapeutic approaches for cancer management

    LFA-1 activates focal adhesion kinases FAK1/PYK2 to generate LAT-GRB2-SKAP1 complexes that terminate T-cell conjugate formation

    Get PDF
    Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and de-adhesion, dependent on receptor clustering. Although increased affinity mediates adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on receptor cross-linking.This work was supported by Wellcome Trust grant (092627/Z/10/Z)

    Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors

    Get PDF
    Background: Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results: In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions: These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection

    Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines

    Get PDF
    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4(+) primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells.This work was supported by Wellcome Trust Grant 092627/Z/10/Z (to C. E. R.

    Inhibitors of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia

    Get PDF
    BACKGROUND: T cells play a dominant role in the pathogenesis of asthma. Costimulation of T cells is necessary to fully activate them. An inducible costimulator (ICOS) of T cells is predominantly expressed on Th2 cells. Therefore, interference of signaling pathways precipitated by ICOS may present new therapeutic options for Th2 dominated diseases such as asthma. However, these signaling pathways are poorly characterized in vitro and in vivo. METHODS: Human primary CD4(+ )T cells from blood were activated by beads with defined combinations of surface receptor stimulating antibodies and costimulatory receptor ligands. Real-time RT-PCR was used for measuring the production of cytokines from activated T cells. Activation of mitogen activated protein kinase (MAPK) signaling pathways leading to cytokine synthesis were investigated by western blot analysis and by specific inhibitors. The effect of inhibitors in vivo was tested in a murine asthma model of late phase eosinophilia. Lung inflammation was assessed by differential cell count of the bronchoalveolar lavage, determination of serum IgE and lung histology. RESULTS: We showed in vitro that ICOS and CD28 are stimulatory members of an expanding family of co-receptors, whereas PD1 ligands failed to co-stimulate T cells. ICOS and CD28 activated different MAPK signaling cascades necessary for cytokine activation. By means of specific inhibitors we showed that p38 and ERK act downstream of CD28 and that ERK and JNK act downstream of ICOS leading to the induction of various T cell derived cytokines. Using a murine asthma model of late phase eosinophilia, we demonstrated that the ERK inhibitor U0126 and the JNK inhibitor SP600125 inhibited lung inflammation in vivo. This inhibition correlated with the inhibition of Th2 cytokines in the BAL fluid. Despite acting on different signaling cascades, we could not detect synergistic action of any combination of MAPK inhibitors. In contrast, we found that the p38 inhibitor SB203580 antagonizes the action of the ERK inhibitor U0126 in vitro and in vivo. CONCLUSION: These results demonstrate that the MAPKs ERK and JNK may be suitable targets for anti-inflammatory therapy of asthma, whereas inhibition of p38 seems to be an unlikely target

    CTLA-4 Activation of Phosphatidylinositol 3-Kinase (PI 3-K) and Protein Kinase B (PKB/AKT) Sustains T-Cell Anergy without Cell Death

    Get PDF
    The balance of T-cell proliferation, anergy and apoptosis is central to immune function. In this regard, co-receptor CTLA-4 is needed for the induction of anergy and tolerance. One central question concerns the mechanism by which CTLA-4 can induce T-cell non-responsiveness without a concurrent induction of antigen induced cell death (AICD). In this study, we show that CTLA-4 activation of the phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. CTLA-4 ligation induced PI 3K activation as evidenced by the phosphorylation of PKB/AKT that in turn inactivated GSK-3. The level of activation was similar to that observed with CD28. CTLA-4 induced PI 3K and AKT activation also led to phosphorylation of the pro-apoptotic factor BAD as well as the up-regulation of BcL-XL. In keeping with this, CD3/CTLA-4 co-ligation prevented apoptosis under the same conditions where T-cell non-responsiveness was induced. This effect was PI 3K and PKB/AKT dependent since inhibition of these enzymes under conditions of anti-CD3/CTLA-4 co-ligation resulted in cell death. Our findings therefore define a mechanism by which CTLA-4 can induce anergy (and possibly peripheral tolerance) by preventing the induction of cell death
    corecore