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LFA-1 activates focal adhesion kinases FAK1/PYK2
to generate LAT-GRB2-SKAP1 complexes that
terminate T-cell conjugate formation
Monika Raab1,2, Yuning Lu1, Karsten Kohler1, Xin Smith1, Klaus Strebhardt2 & Christopher E. Rudd1,3,4

Lymphocyte function-associated antigen 1 (LFA-1) affinity and avidity changes have been

assumed to mediate adhesion to intercellular adhesion molecule-1 for T-cell conjugation to

dendritic cells (DC). Although the T-cell receptor (TCR) and LFA-1 can generate intracellular

signals, the immune cell adaptor protein linker for the activation of T cells (LAT) couples the

TCR to downstream events. Here, we show that LFA-1 can mediate both adhesion and

de-adhesion, dependent on receptor clustering. Although increased affinity mediates

adhesion, LFA-1 cross-linking induced the association and activation of the protein-tyrosine

kinases FAK1/PYK1 that phosphorylated LAT selectively on a single Y-171 site for the binding

to adaptor complex GRB-2-SKAP1. LAT-GRB2-SKAP1 complexes were distinct from canonical

LAT-GADs-SLP-76 complexes. LFA-1 cross-linking increased the presence of LAT-GRB2-

SKAP1 complexes relative to LAT-GADs-SLP-76 complexes. LFA-1-FAK1 decreased T-cell-

dendritic cell (DC) dwell times dependent on LAT-Y171, leading to reduced DO11.10 T cell

binding to DCs and proliferation to OVA peptide. Overall, our findings outline a new model for

LFA-1 in which the integrin can mediate both adhesion and de-adhesion events dependent on

receptor cross-linking.
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T-cell antigen receptor (TCR) engagement activates a protein
tyrosine activation cascade that is accompanied by the
formation of multi-protein signalling complexes for T-cell

activation1–3. These cascades are initiated by p56lck, ZAP-70 and
Tec-family protein tyrosine kinases (PTKs) and various effector
molecules1–7. Adaptors are proteins with sites and modules that
mediate the formation of complexes that integrate signals in cells. Of
these adaptors, the linker for the activation of T cells (LAT) and
SLP-76 are phosphorylated by ZAP-70 (refs 8,9). LAT-deficient mice
are arrested in thymocyte development10, whereas in deficient Jurkat
cells, LAT is needed for calcium mobilization and the optimal
activation of downstream extracellular regulated kinases (ERKs) and
expression of CD69 (refs 10–12). ZAP-70 phosphorylates multiple
sites (Y-132, Y-191, Y-171 and Y-226) on LAT, which in turn recruit
phospholipase Cg1 (PLCg1) and adaptors growth-factor-receptor-
bound protein 2 (GRB2) and GRB2-related adaptor downstream of
Shc (GADS)- SH2 domain containing leukocyte protein of 76kDa
(SLP-76) (or lymphocyte cytosolic protein 2 (lcp2)2. LAT residue
Y-132 binds to phospholipase C-g1 (PLC-g1), whereas residues
Y-171 and Y-191 bind to GADs and GRB2 (refs 13–15). SLP-76 is
recruited to LAT indirectly via its interaction with GADs16. GRB2
contains an SH2 domain flanked by amino-terminal and carboxy-
terminal SH3 domains, and is involved in activation of the Ras and
MAP kinase pathways. The GADs SH2 domain binds to
phosphorylated LAT residues, whereas the SH3 domain binds to a
non-canonical motif on SLP-76 (refs 16,17). SLP-76 binds in turn to
adhesion-and degranulation-promoting adapter protein (ADAP)
(HUGO designation: Fyb) and hematopoietic progenitor kinase 1
(refs 18–21).

The integrin family is comprised of 18a and 8b subunits
that form 24 hetero-dimeric integrins with different ligand
specificities22. Lymphocyte function-associated antigen 1 (LFA-1)
is expressed on T cells and binds to intercellular adhesion
molecules (ICAM)-1 and -2 on major histocompatibility complex
(MHC) bearing antigen-presenting cells (APCs)23. The integrin
controls conjugate formation between T cells and antigen-
presenting cells as well as the migration of T cells to sites of
inflammation and within lymph nodes (LNs)24. LFA-1 can be
activated by TCR and chemokine receptor ligation25. Increased
affinity and clustering (that is, avidity) are thought to contribute
to adhesion. Increased affinity is accomplished by the extension of
the extracellular domain26. Disruption of conformational changes
in the extracellular domain blocks adhesion27. Clustering has
been thought to increase contact numbers and stabilize adhesion,
although the full purpose of this event has yet to be proven.
Previous studies have underscored the primacy of affinity over
clustering in regulation of adhesion27.

Increased affinity is accomplished by the extension of the
extracellular domain and separation of LFA-1 aL and b2
cytoplasmic subunits28. FERM-domain carrying talin and
kindlins to the b-chain alters the conformation of the
extracellular domains29. Adaptor protein RIAM (Rap1–GTP-
interacting adapter molecule) facilitates talin localization30 and
interacts with the cytoskeleton via profiling and Ena/VASP
proteins. GTP-binding protein Rap1 and associated RapL bind to
the a-chain, whereas RapL-deficient lymphocytes exhibit
impaired adhesion and migration31.

In T cells, the immune cell adaptor SKAP1 (src kinase-associated
phosphoprotein 1) (SKAP-55, src kinase-associated phosphopro-
tein-55) couples the T-cell receptor (TCR) to the activation of
LFA-1 (refs 32–36). This is mediated in part by its interaction with
RapL37,38. The Rap1-RapL complex fails to form in Skap1-deficient
T cells, which correlates with reduced binding to ICAM-1 and
conjugation with dendritic cells (DCs)32–34,39. SKAP1 is needed
for RapL plasma membrane localization37,38. SKAP1 influences
RIAM-talin localization at the T-cell interface with DCs, whereas a

cleavage-resistant talin (L432G) restores conjugation40. SKAP-1
also binds to another immune cell adaptor termed
ADAP18,20,33,35,36, whereas LFA-1 co-signals engage ADAP in
the induction of morphology and motility changes19,41.
Considerable evidence indicates that LFA-1 ligation can induce
co-signals that influence TCR signalling19,34,41,42. LFA-1 activates
the Jun activated kinases and p44/42MAPK pathways and prolongs
TCR-mediated inositol phospholipid hydrolysis43.

Members of the focal adhesion kinase family also regulate cell
adhesion and motility44. The family includes FAK1 (Focal
Adhesion Kinase 1) and PYK2 (proline-rich tyrosine kinase-2).
FAKs are comprised of an N-terminal FERM (band 4.1, ezrin,
radixin, moesin homology) domain, a 40 residue linker region,
a kinase domain, a 200 residue proline-rich region, and a
C-terminal focal adhesion targeting domain45. The FERM and
kinase domains form an auto-inhibitory interaction45, which is
released in focal adhesions46. Focal adhesion kinases regulate
focal adhesion contacts, motility and cell survival47.
Non-lymphoid cells from FAK-deficient mice show enhanced
focal adhesion contact formation and reduced cell motility48.
FAK auto-phosphorylation at Tyr-397 is needed for kinase
activation and acts to bind to the SH2-domain of p60Src kinase49.
TCR engagement induces FAK and PYK2 phosphorylation and
translocation to the immunological synapse (IS)50–52.

The observation that increased LFA-1 affinity for adhesion
precedes the clustering of the integrin caused us to question
whether the cross-linking of LFA-1 operated solely to increase
LFA-1 adhesion, or whether it could also auto-regulate to terminate
adhesion and the interaction between T cells and APCs. Given that
LFA-1 generates co-signals, it is also of interest whether LFA-1 can
interface with TCR signalling by altering the make-up of the LAT
adaptor complex. Here, we show that while affinity changes
increase LFA-1 mediated adhesion, the cross-linking of
LFA-1 activated associated focal adhesion kinases FAK/PYK2 to
phosphorylate LAT Y-171 for a reduction in the contact times of
T cells with DCs. These findings support an ‘auto-regulatory on-off
model’ for LFA-1 where the integrin can mediate both adhesion
and de-adhesion, dependent on receptor cross-linking.

Results
LFA-1 induces SKAP1 binding to LAT. The LAT binds to
PLCg1, GADs-SLP-76 and GRB2 for the activation of T cells2,10.
To assess whether the LAT complex could be altered by LFA-1,
T cells were ligated with either anti-CD3 or anti-LFA-1 in an in situ
proximity ligation assay (PLA) (Fig. 1a). Unless otherwise stated,
both anti-CD3 and anti-LFA-1 were bivalent and therefore cross-
link their respective receptors. Antibodies to LAT, SLP-76 and
SKAP1 were employed using isotype-specific antibodies with the
DuolinkTM detection system53. Anti-CD3 induced SLP-76-LAT
proximity signals as shown by an increase in fluorescent dots
(Fig. 1a, panel b, also right histogram). Anti-LFA-1 induced no
SLP-76-LAT proximity signals (Fig. 1a, panel c), whereas the
combination of anti-CD3/LFA-1 reduced the signal compared
with anti-CD3 alone (Fig. 1a, panel d). Interestingly, by contrast,
anti-LFA-1 induced a moderate PLA signal between LAT and
SKAP1 (Fig. 1a, panel g; see right histogram), whereas anti-LFA-1
and anti-CD3 produced the strongest PLA signal between SKAP-1
and LAT (Fig. 1a, panel h). Anti-CD3 alone induced a relatively
weak proximity signal between LAT and SKAP1 (Fig. 1a, panel f).
These results showed that LFA-1 cross-linking increased
the proximity of LAT and SKAP1 either alone or in conjunction
with anti-CD3.

We next assessed whether LFA-1 could promote SKAP1
co-clustering with LAT by immunofluorescent time-lapse
confocal microscopy (Fig. 1b). Micro-clusters of LAT are induced
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Figure 1 | LFA-1 induced SKAP1-LAT and reduced LAT-SLP-76 complexes. (a) In situ proximity analysis shows anti-LFA-1 induced SKAP1-LAT proximity.
Murine DC27.10T-cells were ligated with anti-CD3 and/or LFA-1 followed by in situ proximity analysis for SLP-76 and LAT (upper panels) or SKAP1 and LAT
(lower panels) (n¼4). (b) LFA-1 cross-linking increases SKAP1-LAT micro-cluster colocalization. Jurkat T cells transfected with mCherry-LAT and GFP-
SKAP1 were stimulated on anti-CD3 or ICAM1/CD3 coated cover slips. Micro-cluster formation was monitored by confocal microscopy. Upper panel:
resting; middle panel: anti-CD3; lower panel anti-CD3/ICAM1. Scale bar corresponds to 10mM. (n¼ 3) (c) SKAP1 co-precipitates LAT and vice versa in
response to anti-LFA-1. DC27.10 T cells were ligated with anti-CD3 and/or anti-LFA-1 for 5 min followed by membrane preparation and precipitation with
anti-SKAP1 and blotting with anti-SKAP1, anti-LAT and anti-SLP-76 (upper panels). Conversely, cells were separated into cytosol (lanes 3,4) and
membranes (lanes 5,6) and precipitated with anti-LAT followed by blotting with anti-LAT or anti-SLP-76 (n¼ 3). (d) ICAM1 binding to LFA-1 increases the
binding of SKAP1 to LAT. DC27.10T-cells were ligated with ICAM1-Fc alone on plates (2mg ml" 1) for various times followed by anti-SKAP1 precipitation
and blotting with either anti-LAT, anti-SLP-76 or anti-GADs (n¼ 3) (e) Anti-LFA-1 induced LAT-SKAP1 in human peripheral primary T-cells. Human resting
T-cells ligated with plate bound ICAM1-Fc (2mg ml" 1) or ICAM1-Fc plus soluble anti-CD3 (1 mg ml" 1) for various times followed by anti-SKAP1
precipitation and blotting with anti-SKAP1, anti-LAT, anti-GADS or anti-SLP-76 (n¼ 3).
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in response to anti-CD3 ligation54,55. We previously also reported
that vesicular LAT interacts with surface SLP-76 (ref. 56). Jurkat
T cells transfected with LAT-cherry and SKAP1-GFP were
imaged on anti-CD3 or anti-CD3-ICAM1-Fc-coated cover slips

and monitored as previously described56–58. Anti-CD3 induced
LAT-cherry clusters by 2 min ligation in the central
and peripheral contact regions (Fig. 1b, left middle panels).
Anti-CD3/ICAM-1 induced a similar distribution of LAT-cherry
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Figure 2 | Anti-LFA-1 induced SKAP1-LAT forms independently of SLP-76. (a) Titration of anti-LFA-1 increases LAT-SKAP1 binding. DC27.10 T cells were
ligated with anti-CD3 (2mg ml" 1) in the presence of different concentrations of anti-LFA-1 followed by precipitation with anti-SKAP1 and blotting with anti-SKAP1,
LAT, GADS and SLP-76 (n¼ 3). (b) SKAP1 binds to LAT in SLP-76 deficient J14 Jurkat cells. Jurkat and J14 Jurkat T-cells were ligated with anti-CD3 (1mg ml" 1)
and/or anti-LFA-1 (1mg ml" 1) for 5 min followed by membrane preparation, anti-SKAP1 precipitation and blotting for anti-SLP-76, anti-LAT or anti-SKAP1 (n¼ 3).
(c) SLP-76 co-precipitates LAT from SKAP1-depleted cell lysates. Upper panel: Blot showing anti-SKAP1 depletion of SKAP1. Jurkat cells ligated with anti-CD3
and/or anti-LFA-1 for 5 min followed by detergent solubilization and serial depletion of lysates with anti-SKAP1 (5 times), anti-SLP-76 precipitation and anti-LAT
blotting (n¼ 3). (d) SKAP1 co-precipitates LAT from SLP-76-depleted cell lysates. Upper panel: Blot showing anti-SLP-76 depletion of SLP-76. Jurkat T-cells were
ligated with anti-CD3 and/or anti-LFA-1 for 5 min followed by detergent solubilization and serial depletion of lysates with anti-SLP-76 (five times), anti-SKAP1
precipitation and anti-LAT blotting (n¼ 3). (e) SKAP1 does not associate with PLCg1. Jurkat T-cells were ligated, detergent solubilized and precipitated by anti-
SKAP1. Western blotting was then conducted with anti-PLCg1 (left panel). Upper right panel: cells were cross-linked with anti-LFA-1 and sequentially precipitated
with anti-SKAP1 and each precipitate was subjected to western blotting with anti-SKAP1 (lanes 1–4) or anti-PLCg1 (lane 5). Lower right panel: Cells were depleted
sequentially with anti-PLCg1 and each were the blotted with anti- PLCg1 (lanes 1–4) or anti-SKAP1 (lane 5) (n¼ 3). (f) SKAP1 associates with ADAP and RapL.
Jurkat T-cells were ligated with antibodies as shown, were precipitated with anti-SKAP1 and subjected to blotting with anti-LAT, GADs, SLP-76 and ADAP (upper
panels). The same cells were ligated precipitated as above but then subjected to blotting with anti-RapL (n¼ 3).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms16001

4 NATURE COMMUNICATIONS | 8:16001 | DOI: 10.1038/ncomms16001 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


clusters, although usually at slightly lower levels (Fig. 1b, left
lower panel). By contrast, Although anti-CD3 induced a diffuse
array of SKAP1-GFP around the peripheral region of the cell
(Fig. 1b, middle right panels), co-ligation of LFA-1 by ICAM1
induced markedly larger and more discrete SKAP1 clusters that
were concentrated in the peripheral contact band of the contact
region Fig. 1b, left lower panels). LAT-cherry and SKAP1-GFP
clusters overlapped in this region (Fig. 1b, see yellow dots). These
data confirmed that LFA-1 cross-linking promoted SKAP1-LAT
proximity or clusters, which appeared primarily in the peripheral
contact band, an area known for the localization of LFA-1.

We next assessed biochemically whether LAT could bind to
SKAP1 in response to LFA-1 cross-linking (Fig. 1c). DC27.10
mouse T cells were cross-linked with antibody followed by
precipitation with anti-SKAP1 or LAT. Membrane and cytosolic
fractions were purified by cell disruption and centrifugation, as
described in the Methods37. Anti-SKAP1 co-precipitated LAT in
response to anti-LFA-1 alone and anti-CD3/LFA-1 ligation from
membranes (Fig. 1c, upper panels, lanes 4 and 5). Anti-LFA-1
induced more SKAP1/LAT binding than anti-CD3 in over 8
experiments (Fig. 1c, lanes 4 versus 3). Anti-CD3/LFA-1 coope-
rated to produce the greatest SKAP1/LAT binding (Fig. 1c, lane 5),
consistent with PLA analysis (Fig. 1a). No co-precipitated SLP-76
was observed in the anti-SKAP1 IPs. Similarly, anti-LAT
co-precipitated more SKAP1 in response to anti-LFA-1/CD3,
more than seen with anti-CD3 ligation from membranes (Fig. 1c,
lower panel, lane 6 versus 5).

Further, the cross-linking of LFA-1 by an incubation of
cells with plate immobilized ICAM1-Fc induced LAT-SKAP1
complexes as seen by the co-precipitation of LAT with
anti-SKAP1 from the membrane fraction (Fig. 1d, lanes 8, 9).
No association was seen in precipitates from the cytosolic
fractions (Fig. 1d, lanes 3–5). Neither GADS nor SLP-76 was
observed in the co-precipitates.

Plate immobilized ICAM1-Fc alone or in combination
with soluble anti-CD3 also induced SKAP-1-LAT binding in
peripheral blood human primary T cells (Fig. 1e). Anti-SKAP1
was observed to co-precipitate LAT from the membrane fraction
of cells ligated by ICAM1-Fc over 5–20 min (Fig. 1e, upper panel,
lanes 3–5) and by anti-CD3/LFA-1 (Fig. 1e, lanes 6–8). The
increased level of LAT associated SKAP1 correlated with the
increased presence of SKAP1 in the membrane fraction of cells.
We previously showed that activation signals induce the
translocation of SKAP1 to the membranes of T cells37,38.
Neither GADs nor SLP-76 was observed in the co-precipitates.
Collectively, these data showed that the cross-linking of LFA-1
alone or together with anti-CD3 induced the association of
SKAP1 with LAT in mouse and human T cells.

LAT-SLP-76 and LAT-SKAP1 are distinct complexes. The
absence of SLP-76 or GADs in anti-SKAP1 precipitates suggested
that LAT-SKAP1 and LAT-GADS-SLP-76 were distinct
complexes. To obtain more information, we next ran a titration
with increasing anti-LFA-1 concentrations in the presence of a
fixed concentration of anti-CD3 (2mg ml" 1) (Fig. 2a, lanes 4–6).
This showed that greater levels of LFA-1 cross-linking increased the
level of LAT co-precipitated by anti-SKAP1. Further, we next
assessed whether the formation of LAT-SKAP1 complexes required
SLP-76 expression, and vice versa (Fig. 2b). SLP-76-deficient J14
cells were ligated with anti-LFA-1 followed by anti-SKAP1 pre-
cipitation. Anti-SKAP1 co-precipitated LAT similarly from LFA-1-
ligated wild-type and SLP-76-deficient J14 cells (Fig. 2b, middle
panel, lanes 5 and 10).

Further, depletion analysis of cell lysates was also conducted
(Fig. 2c). Anti-SKAP1 depleted SKAP1 from lysates by carrying

out serial precipitations of the lysate (5# ) prior to precipitating
with anti-SLP-76. Anti-SKAP1 depletion reduced the presence
of SKAP1 in the cell lysate (Fig. 2c, upper panel). Anti-SLP-76
co-precipitated LAT from depleted and non-depleted lysates of
cells stimulated with anti-CD3 (Fig. 2c, lanes 2 and 5). Serial
precipitations (6# ) with anti-SLP-76 were carried out to deplete
lysates of SLP-76 (Fig. 2d, upper panel). We observed that
anti-SKAP1 co-precipitated equal levels of LAT from SLP-76
non-depleted and depleted lysates from cells ligated with
anti-LFA-1 (Fig. 2d, lower panel, lane 3 and 6). Anti-SKAP1
co-precipitated more LAT from anti-LFA-1 than anti-CD3 cross-
linked cells. Taken together, these data indicated that there are
distinct complexes of LAT-SLP-76 and LAT-SKAP1 in T cells.

Previous studies have shown that ant-CD3 induction of
phospholipase Cg-1 (PLCg1) binding to pY-132 on LAT is key
to the generation of activation signals by the adaptor59. However,
anti-SKAP1 failed to co-precipitate PLCg1 as seen in lysates from
cells that been ligated for 10 min with anti-LFA-1 or anti-CD3 and
blotted with anti- PLCg1 (Fig. 2e, left panel, lanes 4 and 3,
respectively). Similarly, anti-PLCg1 blotting of lysates sequentially
depleted of SKAP1 (1–4# ) failed to show a co-precipitated band
(Fig. 2e, upper right panel). As a control, PLCg1 was detected in
anti-PLCg1 precipitates (lane 5). Conversely, anti-SKAP1 blotting
of lysates that had been sequentially depleted of PLCg1 also failed
to show a band (Fig. 2e, lower right panel).

At last, as an additional observation, anti-SKAP1 co-precipitated
ADAP from resting, anti-CD3 and LFA-1 ligated cells (Fig. 2f,
upper panel)18,36,37. Further, anti-SKAP1 co-precipitated
RapL from anti-CD3 and LFA-1-ligated cells cells37,38 (Fig. 2f,
lower panel).

Adaptor GRB2 binds to SKAP1. We next assessed whether
SKAP1 binds to the LAT binding partners, GRB-2, GADs
and PLCg1 (Fig. 3, Supplementary Fig. 1). Flag-tagged SKAP1
was co-expressed with GFP-GRB-2 in 293T cells followed by
anti-SKAP1 precipitation and blotting. SKAP1 precipitated
GRB-2 as detected by anti-GFP blotting (Fig. 3a, lane 6). Western
blotting of lysates with anti-Flag confirmed the expression of
SKAP1 (Fig. 3a, lower panel, lanes 1–3). By contrast, Flag-tagged
SKAP1 failed to co-precipitate either GADS or PLCg1 (Supple-
mentary Fig. 1a, lane 6). These data showed that GRB-2, but
neither GADs nor PLCg1, bind to SKAP1.

To determine which GRB-2 domain binds to SKAP1,
GST-GRB-2 SH2 and GST-GRB-2 SH3 domains were used in a
GST-pull-down assay with co-expressed SKAP1 followed by
blotting with anti-SKAP1. From this, the two GST-GRB2-SH3
domains were seen to precipitate SKAP1 (Fig. 3b, lanes 5, 6),
whereas the GST-SH2 domain failed to precipitate the adaptor
(Fig. 3b, lane 4). The N-terminal SH3-1 domain precipitated
more effectively than the SH3-2 domain (Fig. 3b, lane 5 versus 6).
These data indicated that the SH3 domains of GRB-2 mediate
the binding to SKAP1.

To assess the region in SKAP1 that is recognized by the GRB2
SH3 domain, GST-SKAP1 wild-type and sub-domains were used
in a pull-down assay with GFP-GRB2 followed by blotting
with anti-GRB2. GST-SKAP1 WT, GST-SKAP1 N-PH-SK and
GST-SKAP1-SK precipitated GFP-GRB2 (Fig. 3c, lanes 2, 3, 7,
respectively). By contrast, the GST-SKAP1 N-PH domain,
GST-SKAP1 N-domain and GST-SKAP1 SH3 domain failed to
precipitate the protein GRB2 (Fig. 3c, lanes 4, 5, 6, respectively).
From this, it was evident that the SK region was recognized
by GRB-2.

At last, for confirmation of the interaction in Jurkat T cells,
GST-SKAP1 fusion proteins were used in pull-down assays to
precipitate antigen from anti-LFA-1 ligated Jurkat T cells. GST
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SKAP1 WT precipitated LAT, GRB-2 and ADAP from lysates
(Fig. 3d, lane 3). Neither PLCg1 nor SLP-76 was co-precipitated.
As a control, the GST-SKAP1 SH3 domain failed to precipitate
GRB2, but did precipitate ADAP (Fig. 3d, lane 4), as we and
others have reported35,36.

LFA-1 recruits FAK-1 to selectively phosphorylate LAT Y-171.
Next, we assessed whether LFA-1 cross-linking could induce LAT
phosphorylation (Fig. 4a). DC27.10 T cells were incubated
with anti-CD3 or anti-LFA-1 for 5 min followed by membrane
purification and blotting with anti-phospho-specific LAT
antibodies. As previously described59, anti-CD3 induced the
phosphorylation of LAT at residues Y-171, Y-191 and Y-132
over 2–10 min (Fig. 4a, lanes 2–4 versus 1). Remarkably, anti-LFA-
1 phosphorylated LAT at only single site Y-171 (Fig. 4a, lanes 5–8).
The level of Y-171 phosphorylation was similar, or greater, than
seen with anti-CD3 (n¼ 7). Neither Y-191 or Y-132 was
phosphorylated. As a control, anti-LAT blotting showed the
expression of equal levels of protein in the solubilized membrane
fractions. These data showed the novel finding that LFA-1
phosphorylated LAT at a restricted Y-171 residue.

This phosphorylation of a single site suggested that LFA-1 uses
a kinase distinct from ZAP-70. FAK1 and PYK2 can associate

with focal adhesions where auto-phosphorylation is an essential
step for activation47. We therefore assessed whether these kinases
associated with LFA-1 and mediated phosphorylation (Fig. 4b).
Jurkat T cells were ligated with anti-LFA-1 or anti-CD3/LFA-1
for 5 min followed by anti-LFA-1 precipitation and blotting.
Anti-LFA-1 precipitation from cells cross-linked with anti-LFA-1
or anti-CD3/LFA-1 showed the increased presence of FAK1 and
PYK2 (Fig. 4b, lanes 2, 3, upper panels). Although no LFA-1
associated FAK1 was found in resting cells (that is, rabbit control
anti-mouse) (Fig. 4b, lane 1), associated PY-2 seen in resting cells
was increased by LFA-1 ligation (Fig. 4b, lanes 2, 3 versus 1).
Importantly, LFA-1 ligation also activated the associated
FAK1 and PYK2 kinases, as seen with antibodies to the
auto-phosphorylation sites (that is, FAK at Y-397 or PYK2 at
Y-402) (Fig. 4b, lane 2) or LFA-1/CD3 (Fig. 4b, lane 3). These
data showed that LFA-1 cross-linking induces the association
and activation of FAK1 and PYK2 kinases.

We next used a cold in vitro kinase assay to assess whether
FAK1 directly phosphorylated Y-171, (Fig. 4c). 293T cells were
transfected with various mutants of Flag-tagged LAT. Anti-Flag
was used to precipitate LAT followed by an in vitro kinase assay
in the presence of exogenous added recombinant FAK1 and
non-radioactive ATP followed by blotting with an anti-phospho-
tyrosine (4G10). In this, wild-type LAT, Y-191F and the Y-132F
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mutants were phosphorylated by FAK1 (Fig. 4c, lanes 1, 3 and 5,
respectively). However, Y-171F and Y-171/191-F mutants showed
a markedly reduced signal (Fig. 4c, lanes 2, 4). Anti-Flag blotting
confirmed the equal expression and precipitation of WT LAT and
mutants. These data showed that Y-171 was the preferred
phosphorylation site of FAK1 in an in vitro kinase assay.

We also co-transfected 293T cells with Myc-tagged LAT and
either Flag-tagged FAK1, or PYK2, followed by precipitation and
blotting with anti-phospho-LAT specific antibodies (Fig. 4d).
Remarkably, again, FAK1 phosphorylated LAT on Y-171, but not
on Y-191, Y-132 or Y-226 (Fig. 4d, lane 2 versus 1). The expression

of related Flag-PYK2 also phosphorylated LAT on Y-171 but not on
the other sites (Fig. 4d, lane 4 versus 3).

Jurkat T cells were also transfected with Flag-PYK2 followed by
cross-linking with anti-LFA-1 in the presence or absence of the
FAK1/PYK2 inhibitor PF 431396. Anti-LFA-1 cross-linking
induced Y-171 phosphorylation in mock-transfected cells
(Fig. 4e, lane 2 versus 1), and this was further increased by
PYK2 transfection (Fig. 4e, lane 4). PF431396 inhibited the anti-
LFA-1 induced phosphorylation of Y-171 (Fig. 4e, lane 6). These
data showed that PYK2 expression co-operated with LFA-1
cross-linking to induce the phosphorylation of the Y-171 site.

Similarly, activated FAK1/PYK2 were found associated with
SKAP1. Jurkat cells were ligated for 5 min in the presence
of FAK1/PYK2 inhibitor PF 573228 followed by precipitation
with anti-SKAP1. Anti-LFA-1 induced the binding of FAK-1
and PYK2 to SKAP1 (Fig. 4f, lanes 3 versus 1). Second,
SKAP1-associated FAK1 and PYK2 were active as seen by
anti-FAK pY-397 or anti-PYK2 pY-402 blotting (Fig. 4f, lane 3).
Third, the presence of associated FAK1 and PYK2 was reduced by
inhibition of kinase activity (Fig. 4f, lane 6 versus 3). Anti-FAK
pY-397 or anti-PYK2 pY-402 blotting confirmed the inhibition of
kinase activity by the drug. These data confirmed that anti- LFA-1
cross-linking induced the binding of FAK1/PYK2 to SKAP1, an
event dependent on increased FAK1/PYK2 phosphorylation and
activity. By contrast, anti-CD3 increased the FAK1/PYK2 signal,
but at a level lower than seen with anti-LFA-1 (Fig. 4f, lane 2).

To assess whether the association of SKAP1 with endogenous
GRB-2 was dependent on binding to the Y171 site on LAT,
LAT wild-type or mutants were co-expressed with SKAP1 in
293T cells, followed by anti-GRB2 precipitation and blotting with
anti-SKAP1. Unlike LAT and SKAP1, GRB2 is endogenously
expressed in 293T cells. Anti-GRB-2 co-precipitated SKAP1 from
cells expressing wild-type and the Y-132, Y-191, Y-226 mutants
(Fig. 4g, lanes 1, 2, 4, 5, respectively). By contrast, the anti-GRB-2
co-precipitated SKAP1 was greatly reduced in precipitates from
cells expressing Y-171, or Y-171/Y-191 (Fig. 4g, lanes 3, 6). GRB-
2 binding to SKAP1 (that is, SH3 domain) was therefore
influenced by GRB-2 binding to LAT (that is, SH2 domain).

To further determine whether LAT and the LAT pY-171 site
was needed for anti-SKAP1 co-precipitation of the kinases,
various combinations of Flag-FAK, Flag-PYK2, SKAP1 and LAT
were co-expressed in 293T cells and assessed for binding
(Fig. 4h). Anti-SKAP1 co-precipitated LAT and Flag-FAK1 or
Flag-PYK2 from cells co-transfected with WT LAT, SKAP1 and
Flag-PYK2 or Flag-FAK1 (Fig. 4h, lanes 5 and 7). By contrast,
greatly reduced when LAT-pY171 and Flag-PYK-2 or Flag-FAK
was co-precipitated by anti-SKAP1 (Fig. 4h, lanes 6 and 8). These
observations showed that SKAP1 binding to FAK1 and PYK2
requires the presence of binding sites on LAT at Y-171.

LFA-1 cross-linking is needed to activate FAK1 and LAT pY-171.
We next assessed whether increased LFA-1 affinity mediated
binding could activate FAK1/PYK2 and LAT -pY-171, or whether
receptor cross-linking was required. The combination of
5 mM MgCl2þ and 1 mM EGTA buffer is known to
induce conformational changes for high-affinity LFA-1 without
receptor cross-linking22,60. To confirm the effectiveness of
MgCl2þ /EGTA, Jurkat cells were incubated with the reagents
for 15 min and assess for adhesion to immobilized ICAM-Fc on
plates (Fig. 5a). This showed a marked increase in the number of
cells bound to plates (that is, 1,800 versus 10 cells per cm" 2),
thereby confirming affinity activation.

Given this, we next incubated Jurkat cells with MgCl2/EDTA,
soluble anti-LFA-1 Fab’, soluble Fab’ plus MgCl2/EDTA or
soluble anti-LFA-1 for various times followed by blotting with
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Figure 5 | LFA-1 cross-linking needed for pY-171 and FAK auto-
phosphorylation. (a) MgCl2/EDTA induced the adhesion of T cells to
ICAM-1 on plates. Left panels: images of T cells bound to ICAM-Fc
(left: untreated controls; right: MgCl2/EDTA treated cells stained with DAP1
and TRITC-phalloidin). Right panel: histogram showing MgCl2/EDTA
induced increases in T-cell binding to ICAM1-Fc (n¼ 3). (b) Antibody
cross-linking is needed to induce pY-171 and FAK/PYK2 auto-
phosphorylation. Jurkat cells were either incubated with soluble anti-LFA-1
Fab’ or Fab’ plus MgCl2/EDTA or full sized anti-LFA-1 for various times
followed by blotting with anti-pY171- LAT, anti-LAT, anti-pY-397-FAK,
anti-FAK or anti-pY-402-PYK2 and anti-PYK2. Assay was performed in the
absence of ICAM1 on plates (n¼ 3). (c) Mono-valent ICAM1 failed to
induce pY-171 and FAK/PYK2 auto-phosphorylation. Jurkat cells were either
incubated with soluble ICAM1-Fc or ICAM1-Fc plus MgCl2/EDTA or
bivalent anti-LFA-1 for various times followed by blotting with anti-pY171-
LAT, anti-LAT, anti-pY-402 PYK2 and anti-PYK2. Assay was performed in
the absence of ICAM1 on plates (n¼ 3).
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anti-pY171 LAT, anti-LAT, anti-pY-397-FAK, anti-FAK or
anti-pY-402-PYK2 and anti-PYK2 (Fig. 5b). The assay was
performed in the absence of ICAM1 on plates. Despite affinity
activation, incubation with MgCl2þ /EGTA induced no LAT
pY-171, pY397-FAK1 or pY401-PYK2 phosphorylation (Fig. 5b,
lanes 2 versus 1). Further, the engagement of LFA-1 with mono-
valent Fab’ anti-LFA-1 failed to induce phosphorylation, either
alone or in the presence of MgCl2þ /EGTA (Fig. 5b, lanes 3–7). In
contrast, the cross-linking of LFA-1 on the same cells with
bivalent anti-LFA-1 induced the phosphorylation of LAT Y-171,
Y397-FAK1 or Y401-PYK2 (Fig. 5b, lane 8). Similarly, incubation
of cells with soluble mono-valent ICAM1-Fc alone, or in
combination with ICAM1-Fc MgCl2þ /EGTA over 5–20 min
did not induce phosphorylation of Y-171 LAT or pY401-PYK2
(Fig. 5c, lanes 2–7). As a control, bivalent anti-LFA-1
cross-linking induced pY-171 LAT (Fig. 5c, lane 10). Together,
this data showed that the activation of FAK1 and PYK2 and
phosphorylation of LAT Y-171 required LFA-1 cross-linking.

FAK1 limits T-cell dwell times with DCs. We next assessed
whether FAK1 and LAT-Y171 influenced the dwell times of T cells
with DCs. DO11.10 CD4þ T cells were transfected with FAK1
siRNA followed by a measure of the dwell times with DCs, as
described37,61 (Fig. 6). Mature DCs were labelled with SNARF-1
and pre-incubated with OVA peptide (DC-OVA) prior to
incubation with T cells61. FITC-siRNA electroporation showed
an 80% siRNA uptake by T cells and reduced expression of FAK1
by anti-FAK1 blotting (Fig. 6a, right panels). These T cells showed
significantly longer contact times with DCs than T cells transfected
with the siRNA scrambled control. FAK1 siRNA increased the
mean contact time of T cells from 675 to 814 s in the presence of
OVA peptide, and from 334 to 482 s in the absence of peptide
(Fig. 6a, left and middle upper panels). Antigen independent
conjugation between T cells and DCs has been previously
described. Concurrently, we observed a reduction in T-cell
motility and displacement owing to FAK1 siRNA (Fig. 6a, lower
right and left panels). In the presence of OVA peptide, T cells with
FAK siRNA showed a mean velocity of 6mm min" 1 compared
with 8.6mm min" 1 for scrambled, whereas velocity in the absence
of antigen increased from 10mm min" 1 relative to 13mm min" 1

for the scrambled control. Similarly, displacement (distance from
the site of origin) decreased with FAK1 siRNA from 48 to 32mm in
the presence of peptide and from 80 to 54mm in its absence.

Consistent with this, FAK1 siRNA T cells were also more
rounded and less polarized (that is, less amoeboid) in the
presence and absence of OVA peptide relative to cells expressing
control siRNA (as defined as 1.4/1.0 length versus width) (Fig. 6b;
right panel and images).

Conversely, FAK1-GFP transfection of DO11.10 CD4þ T cells
reduced contact times with DCs (Fig. 6c, left panel). In the
presence of OVA peptide, we found that FAK1-GFP transfected
cells showed a mean contact time of 486.3 relative to 664.2 s for
vector-GFP transfected control cells. In the absence of antigen,
the cells showed a mean reduced dwell time of 275 compared
with 389 s for vector-GFP. At the same time, mean motility was
significantly increased from 8.9–11.7 s in the presence of antigen
and 14–16.4 s in its absence of OVA peptide (Fig. 6c, middle
panel). Displacement was also increased from 41 to 65 mm in the
presence of antigen and 88 to 117mm in the absence of OVA
peptide (Fig. 6c, right panel). These observations show that
FAK1 in T cells reduces contact times between T cells and DCs.

FAK limitation on T-cell dwell times depends on LAT Y-171.
Given the phosphorylation of LAT Y-171 by FAK1, we next asked
whether the FAK1 induced reduction in T-cell conjugation was

dependent on LAT Y-171 (Fig. 7). In this case, DO11.10 CD4þ
T cells were co-transfected with FAK1-GFP and wild-type LAT or
LAT-Y171F followed by a measurement of dwell times. In the
presence of OVA peptide, the combination of FAK-GFP and LAT
reduced the mean contact times from 751.1 to 583.3 s, and in the
absence of antigen, from 396 to 275 s (Fig. 7a). Conversely, the
combination of FAK1-GFP and LAT increased motility and
displacement (Fig. 7b,c).

Significantly, by contrast, the co-expression of the LAT-Y171F
mutant completely reversed the reduced dwell effect of
FAK1-GFP on conjugation times (Fig. 7a, upper left panels). It
even increased the mean contact from 715 to 851 s in the presence
of OVA and from 396 to 544 s in the absence of OVA peptide
(Fig. 7a, upper left panels). This increase in contact time was even
higher than seen in the GFP vector control cells. Similarly, the
expression of LAT-Y171F blocked the ability of FAK1 to increase
the mean velocity and displacement of cells (Fig. 7b,c, right and
lower panels). These observations showed that the ability of FAK1
to limit T-cell contact with DCs was dependent on LAT Y-171,
the site phosphorylated by FAK1.

Similar results were obtained when LAT-Y171F was expressed
in T cells in the absence of co-transfected FAK1 (Fig. 7d). In the
absence of overexpressed FAK1, the effect of the wild-type LAT
was less apparent, however, the expression of LAT-Y171F
increased contact times (620–850 s) (left panel) concurrent with
a reduced velocity (7.7–4.5 mm min" 1) (Fig. 7d, middle panel)
and displacement (27–12 mm) (Fig. 7d, right panel). These
observations showed that LAT-Y171F was effective in modulating
conjugation in the presence of endogenous FAK1.

This modulation of dwell times by FAK1 and LAT-Y171F was
also reflected in the proliferative response of DO11.10T cells to
OVA peptide (Fig. 7e). DO11.10T cells were labelled with
carboxyfluorescein diacetate succinimidyl ester, incubated with
DCs plus OVA peptide and assessed for cell division by flow
cytometry at day 6. Although vector-transfected cells under cell
division can be seen as the presence of M2–M6 cell divisions,
transfection of FAK1 and WT LAT inhibited the proliferation
(that is, mostly M2-M3). By contrast, the combination of FAK1
and LAT-Y171F restored to proliferation (that is, M4-M6) to that
seen in the vector transfected cells (Fig. 7e, see right histogram).
These observations showed that LAT Y-171 reversal of the
dissociative effects of FAK1 on T-cell/DC conjugation was
reflected in a restoration of T-cell proliferation.

At last, JCAM.2 T cells lacking LAT were transfected with
wild-type LAT versus Y-171 and assessed for random motility on
ICAM-1-Fc coated plates (Fig. 7f). Although wild-type LAT
supported extensive random migration as seen by the presence of
extensive tracks, Y-171 mutant arrested motility as shown by the
absence of tracks (Fig. 7f, right panels). Blotting showed equal levels
of expressed wild-type and mutant (Fig. 7f, left panel). These
observations indicated, using another model, that the LAT Y-171
site is needed for T-cell motility, in this instance, random motility.

Discussion
Although LFA-1 binding to ICAM-1 initiates T-cell adhesion to
antigen-presenting cells, the identity of signals that limit or
terminate conjugate is poorly understood. In this context, LFA-1
undergoes changes in affinity and avidity (that is, clustering), events
that have been assumed to increase adhesion for conjugate
formation. LFA-1 generates ‘outside-in’ co-signals, although
whether these events affect TCR signalling has been unclear. Here,
we show that although increased affinity initiates adhesion, LFA-1
cross-linking recruits and activates FAK1 and PYK2 to phosphor-
ylate LAT selectively on a single Y-171 site that binds to the GRB2-
SKAP1 complex and limits dwell times with DCs. Our findings
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made two novel points, firstly that LFA-1-FAK-1 co-signals can
intersect with TCR signalling by re-structuring the LAT complex in
T cells, and second, that LFA-1 is an ‘auto-regulatory on-off’
receptor that can mediate the opposing roles of adhesion and de-
adhesion dependent on affinity versus clustering.

Previous studies underscored the primacy of affinity over
clustering in regulation of LFA-1 adhesiveness27. The current

model is that increased affinity cooperates with increased avidity
to increase adhesion. The fact an increased LFA-1 affinity
precedes clustering caused us to question whether cross-linking
might generate co-signals that also terminate conjugation (that is,
auto-regulatory model). In agreement, we found that the cross-
linking of LFA-1 recruited and activated focal adhesion kinases
FAK1/PYK2 to phosphorylate LAT Y-171 and reduce contact
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Figure 6 | FAK1 reduces T cell contact with DCs. (a) FAK1 siRNA increased contact times while reducing velocity. DO11.10 T cells were pre-stimulated for
24 h, resting for 12 h and transfected with siRNA for FAK1. Mature DCs were labelled with SNARF-1 and pre-incubated with OVA peptide (DC-OVA) prior to
incubation with T cells on LN slices, as described37,61. DO11.10 T cells were labelled with CFSE and tracked for migration on LN slices. Upper left panel: image
example of T cells interacting with DCs; upper middle panel: dot plots showing that FAK1 siRNA increases T-cell dwell times with DCs; upper right panel: anti-
FAK1 blot showing reduction in FAK1 expression (lower: FITC siRNA uptake as shown by flow cytometry); lower left panel: dot plot showing that FAK1 siRNA
reduces the velocity of T cells; lower right panel: dot plots showing that FAK1 siRNA reduces the displacement of T cells (n¼ 3). (b) siRNA knockdown of FAK1
decreased the amoeboid morphology of DO11.10 T cells. siRNA expression increased the percentage of cells with rounded morphology while decreasing those
with an amoeboid shape (4# length relative to width). Left panel: histogram of ratio of rounded versus amoeboid cells; right panels: images of cells (n¼ 2).
(c) FAK1 overexpression decreases dwell times with increased motility and displacement. DO11.10 T cells were prepared as above and transfected with
GFP-FAK1. Mature DCs were labelled with SNARF-1 and pre-incubated with OVA peptide (DC-OVA) prior to incubation with T cells. Left panel: dot plot
showing that FAK1 expression reduces contact times; middle panel: dot plot showing that FAK1 expression increases velocity; right panel: dot plot showing that
FAK1 expression increases displacement (n¼ 3). P values were calculated by one-way analysis of variance (ANOVA) between groups followed by a series of t-
tests.
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times between T cells and DCs. In our model, increased LFA-1
affinity to monovalent ligand ICAM1 mediates contact with DCs
which is then followed by clustering and cross-linking of the
receptor, which reduces or terminates adhesion. This occurs via
the FAK1 activation, and its mono-phosphorylation of LAT
Y-171. Since LFA-1 clusters in the pSMAC, it seems reasonable
that some degree of receptor cross-linking would occur.

Importantly, FAK1/PYK2 were recruited and activated by LFA-
1 cross-linking, and not by affinity activation of LFA-1 with
MgCl2þ /EGTA, or the monovalent binding of anti-LFA-1 Fab’
or in combination. FAK1/PYK2 auto-phosphorylation or LAT
Y-171 phosphorylation depended on cross-linking with a bivalent
antibody. These general effects were seen in DO11.10, Jurkat and
primary T cells. LFA-1 is, therefore, similar to receptors such as
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CD4 and CD8, which we previously showed to recruit the kinase
p56lck to activate signalling pathways in cells4,6,7. In the case of
LFA-1, associated FAK1 interferes or terminates conjugate
formation initiated by affinity induced LFA-1 adhesion. The
pathway could also have roles during leukocyte endothelial
transmigration.

Previous studies have focused on the central role played by
LAT in the mediation of TCR signals2. Our study has identified
two new kinases, FAK1 and PYK2, which can phosphorylate and
interface with the LAT adaptor. Intriguingly, unlike ZAP-70
which phosphorylates multiple sites on LAT (that is, Y-132,
Y-191, Y-171 and Y-226), FAK1 and PYK-2 phosphorylated only
a single site on LAT at Y-171. This remarkable fidelity was seen
in overexpression and in in vitro kinase assays, as well as with
FAK1 drug inhibition following LFA-1 ligation. LFA-1-FAK1
therefore skewed the nature of LAT regulation from poly- to
mono-phosphorylation at Y-171. FAK1 and PYK2 showed that
same pattern consistent with the conserved nature of their kinase
domains. LFA- and FAK1 in turn facilitated recruitment of a
novel GRB-2-SKAP1 complex. As with GADs binding to SLP-76,
we found that the SH3 domains of GRB-2 bound to SKAP1,
whereas the SH2 domain of the adaptor bound to LAT. In this
manner, GRB-2 brings SKAP1 to the LAT complex. FAK1 and
PYK2 were also part of the complex by unexplained mechanisms.

Surprisingly, we found that LAT-GRB-2-SKAP1 complexes
were distinct from LAT-GADS-SLP-76 complexes. At no point
did anti-SKAP1 precipitates show the presence of either SLP-76
or GADs in response to anti-LFA-1 or anti-LFA-1/CD3, despite
co-precipitating LAT, or vice versa. This new observation
indicates that different receptors produce distinct LAT complexes
for the regulation of function. As a possible explanation, anti-
LFA-1 induced LAT-SKAP1 micro-cluster formation primarily in
the pSMAC-like region enriched with LFA-1. This contrasted
with anti-CD3 induced LAT-GADs-SLP-76 complexes that are
seen in both the centre and periphery of cells54,62. This
concentration of LAT-FAK1 might topographically allow for
FAK1 mediated phosphorylation separate from ZAP-70.
However, it was also noteworthy that TCR ligation cooperated
strongly with anti-LFA-1 with increased LAT-SKAP1 proximity
as seen by in situ proximity analysis and biochemically by the
presence of co-precipitated SKAP1. This basis for this
cooperation is not clear, but might be due to the well-known
ability of the TCR to promote LFA-1 clustering and to
independently induce FAK1 and PYK2 auto-phosphorylation
that could synergize with anti-LFA-1.

Functionally, we found that FAK1 reduced T-cell contact
times with DCs as observed by siRNA downregulation of FAK1
(that is, which increased dwell times), or by FAK1 transfection
(that is, which reduced contact times). Increased dwell times in
turn correlated with reduced motility, and conversely, reduced
contact with increased motility. Intriguingly, co-expression of the

LAT-Y171F mutant reversed the ability of FAK1-GFP to shorten
conjugation times. In fact, in the absence of co-transfected FAK1,
it even increased mean contact times relative to the vector
transfected cells, presumably due to an ability to complete with
endogenous wild-type LAT, resulting in increased contact times
and enhanced proliferation at wild-type levels. These findings are
therefore consistent with a model where LAT Y-171 residue
negatively regulates T-cell conjugation formation and activation
when phosphorylated by FAK1. Whether PYK2 operates the
same way is uncertain. Reconstitution studies showed that PYK2
failed to replace FAK1 to enhance migration63.

Further downstream, the full range of signalling events
responsible for the reduced conjugation of T cells remains to
be determined. We previously showed that SKAP1 regulates
LFA-1 mediated adhesion, conjugation and motility32,34,37,39.
In this context, SKAP1 expression is needed for TCR induced
Rap1-RapL complex formation, whereas RapL mutations that
abrogate SKAP1 binding reverse its ability to reduce T-cell
motility (that is, stop signal) in LNs37. We also previously showed
that the expression of the SKAP1 binding partner, ADAP
promoted the motility of T cells on ICAM1 coated plates19.
At the same time, FAK1 promotes the turnover of cell contacts
in non-lymphoid cells lacking ADAP and SKAP1 (refs 48,64,65).
FAK1-deficient cells are less motile with larger focal adhesion
plaques48. Downstream regulators may therefore also include
other FAK1 targets such as a focal adhesion associated protein,
paxillin or RhoA66. LAT-GRB-2 also binds to THEMIS, a
mediator of cell survival67.

LAT has multiple potential sites for GADs and GRB-2 binding
as well-established by the Samelson lab2. GRB-2 and GADs use
their SH2 domains to bind LAT and their SH3 domains to bind
to their respective binding partners. We found that the
N-terminal SH3-1 domain was most effective in binding to the
SK region of SKAP1 (between the SH3 and PH domains). The
GADs SH3 domain binding is unusual in binding to an atypical
motif on SLP-76 (ref. 17), that is not present in SKAP-1.

The conditions that determine the specificity of SH2 binding to
LAT are not fully understood. GRB-2 binding requires an N in
the plus 2 position relative to the Y that are found in sites, Y-110
(YENE), Y171 (YVNV), Y191 (YVNV) and Y-226 (YENL)68.
These motifs correspond to a class of hybrid ligand motifs that
are permissive and less selective for GRB2 binding as seen
with the CD28 pYMNM motif that binds to both GRB-2 and
PI 3-kinase69,70. The putative sites are not equally bound or
accessible to GRB-2 (or GADs)59. With LFA-1, we found that
GRB-2-SKAP1 bound only to the Y-171 site, the site
phosphorylated by FAK1/PYK2. Further, FAK1 and PYK-2
were also part of the complex as seen in co-precipitation
experiments. It is possible that the presence of these other
components promotes the preferential binding of GRB-2 for
Y-171 motif.

Figure 7 | FAK1 reduces T-cell contact times with DCs, an effect dependent on the LAT Y-171. (a) Dot plots showing that LAT-Y-171F expression reverses
FAK1 inhibition of T-cell dwell times. DO11.10 T cells cells were prepared as above and co-transfected with FAK1 and LAT or LAT-Y171F. Mature DCs were
labelled with SNARF-1 and pre-incubated with OVA peptide (DC-OVA) prior to incubation with T cells. (b) Dot plots showing that LAT-Y-171F expression
reverses FAK1 increase in T-cell velocity. DO11.10 T cells were prepared as above. (c) Dot plots showing that LAT-Y-171F expression reverses FAK1 increase
in T-cell displacement. DO11.10 T cells were prepared as above. (d) LAT-Y-171F expression alone increases T-cell dwell times. LAT-Y171F increases T-cell
contact (left panel); LAT-Y171F decreases T-cell motility (middle panel); LAT-Y171F decreases T-cell displacement (middle panel). D011.10 T cells were
prepared as above and co-transfected with LAT-Y171F prior to a measure of T-cell contact with DCs. (e) LAT-Y171F expression reverses FAK1 inhibition of
DO11.10T-cell proliferation in response to OVA peptide. DO11.10 T cells were prepared as above except that they were pre-labelled with CFSE. Left panels:
FACs histograms of CFSE labelling; right histogram: panels showing the inhibition of T-cell cycling by FAK1 LAT-WT (gold columns showing most cells in
M1–M3, whereas FAK1 LAT Y-171F shows the increased presence of cells in M3-M6 (n¼4). (f) LAT-Y-171F expression blocks T-cell motility/migration on
ICAM1-Fc coated plates. J14 Jurkat cells were transfected with LAT or LAT-Y-171F and tracked for migration. Left panel: immunoblots of lysates transfected
with LAT or LAT-Y-171F; middle panel: tracking profiles of LAT transfected J14 T cells; right panel: tracking profiles of LAT-Y-171F transfected J14 T cells
(n¼ 3). P values were calculated by one-way analysis of variance (ANOVA) between groups followed by a series of t-tests.
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Overall, our findings fit a new model (that is, auto-regulatory)
where LFA-1 mediates both adhesion and de-adhesion. LFA-1
co-signals intersect with TCR signals at the level of the LAT
complex. In our model, adhesion is mediated by increased
affinity, whereas the subsequent clustering and cross-linking
of LFA-1 leads to FAK1/PYK2 activation and the phosphoryla-
tion of LAT to limit or terminate T-cell/DC conjugation in
adaptive immune responses. Enhanced TCR ligation at the
nascent IS would activate ZAP-70 to induce classic activating
LAT- PLCg1/SLP-76 complexes. ITK, RLK and ACK
(Cdc42-associated kinase 1) phosphorylate SLP-76 (refs 71–73),
whereas PLCg1 and GADs-SLP-76 mobilize calcium and activate
the ERK pathway9,11. However, with the maturation of the IS and
subsequent clustering, the cross-linking of LFA-1 (either alone or
in conjunction with the TCR) would become increasing dominant
with increased numbers of LAT-GRB-2 SKAP1 complexes at the
expense of activating LAT-GADs-SLP-76- complexes. Further, by
activating FAK1, LFA-1 would induce a pathway that leads to
reduced conjugation and the dissociation of T cells from DCs.
Our findings suggest the possible use of FAK1 inhibitors to
increase T-cell conjugate formation in vaccine development and
anti-tumour immunotherapy.

Methods
Cell culture. Jurkat cells (American Type Culture Collection (ATCC)) were grown
in RPMI meeium 1640 with 10% fetal calf serum (FCS), 2 mM L-glutamine,
penicillin and streptomycin. J14 cells (SLP-76-deficient Jurkat cells) were kindly
provided by Dr A. Weiss (UCSF). DC27.10 cells were obtained from Dr Oreste
Acuto (University of Oxford), whereas isolated mouse splenocytes were cultured
after removal of red blood cells with hypotonic buffer (0.15 M NH4Cl, 1 mM
NaHCO3, 0.1 mM EDTA, PH 7.25) in RPMI containing 10% FCS, 5% glutamine,
5% penicillin/streptomycin and 2-mercaptoethanol at 5# 10" 5 M. To generate
T-cell blasts, isolated splenocytes were cultured with Con A (2.5 mg ml" 1) for 2
days, and then cultured in growth medium with interleukin-2 (IL-2) (20 ng ml" 1)
for 2–3 days. For experiments, T cells were washed and rested in growth medium
for 2 days in the absence of growth factor. CD4þ T cells were purified using
Dynabeads mouse CD4 (11415D–Thermo Fisher Scientific) according to the
manufacturer’s instructions (Invitrogen). All experiments abided by the ethical
review standards (Research Ethics Committee and the Animal Welfare and Ethical
Review Body) of Cambridge University.

Bone marrow-derived dendritic cells (BMDC) were cultured at
1# 106 cells per ml" 1 in RPMI medium supplemented with 10% FCS, 2 mM
glutamine, 100 IU ml" 1 penicillin, 100 mg ml" 1 streptomycin and 50 M 2-
mercaptoethanol, 20 ng ml" 1 recombinant murine GM-CSF and 10 ng ml" 1 IL-4.
On day 7 of culture, BMDCs were induced to mature by adding 1 mg ml" 1 LPS to
the medium. After an overnight incubation, non-adherent cells and loosely
adherent proliferating BMDC aggregates were collected, washed and replated for
1 h at 37 !C to remove contaminating macrophages.

Human T cells were prepared from buffy coats isolated by leukophoresis
(Addenbrookes Hospital Cambridge with donor consent). Mononuclear cells were
isolated by Ficoll density gradient centrifugation. After being washed, cells were
stimulated for 24 h at 37 !C with 5 mg ml" 1 of phytohemagglutinin. After two
washes, cells were maintained for 5–6 days in exponential growth phase in RPMI
medium plus 10% FCS supplemented with 20 ng ml" 1 of recombinant IL-2,
followed by washing and IL-2 starvation for 24 h. Cells were re-suspended at 108

cells per ml in 250 ml of complete medium containing 100mg of SLP 76 EYFP
expression construct.

Transfections were performed in 4 mm gap-cuvettes with the use of a BTX
ECM 830 electroporator with a single pulse of 385 V and 6 ms. Cells were
immediately transferred to pre-warmed complete medium and allowed to recover
for 24 h prior to analysis. siRNAs specific for FAK1 (not PYK2) and control
scrambled siRNAs were synthesized by Cell Signaling Technology. FAK siRNA
purchased from Santa Cruz Biotechnology, Cat No: sc-35353. No effect of FAK-1
siRNA was noted on PYK2 expression.

Antibodies. Anti-human CD3 (OKT3) (#IMG 6240E) was obtained from
Imgenex, anti-mouse CD3 (145-2C11) ) (# 553057) was obtained from BD
Pharmingen. CXCL12/SDF-1a (#460-SD/CF) was purchased from R&D. Anti-LAT
(#06-807), anti-Tyr402-PYK2 (#07-892), anti-FAK (#05-537), anti-p397-FAK
(05-1140) and SKAP1(#07-651) were purchased from Millipore. Anti-pY-191-LAT
(#3584), anti-p171-LAT (#3581), Anti-pY226-LAT (#07-295), anti-ADAP (#07-546),
anti-GRB-2 (#3972), anti-Myc (clone 9B11) (#2276), anti- PYK2 (#06-559) and
anti-GADS (#06-983) were purchased from Cell Signaling. Anti-pY132-LAT
(#44-224) was from Biosource. Anti-GFP (clone B-2) (sc-9996) and anti-GST
(clone B-14) (#sc-138) were from Santa Cruz. Anti-Flag (#F4799) was from Sigma.

Anti LFA-1(clone M18/2) (#557437) was purchased from BD Pharmingen and
anti-ICAM-1(#796-IC) were purchased from R &D. Alexa-488 conjugated goat
anti-rabbit IgG and Alexa-568 conjugated goat anti-mouse IgG1 were purchased
from Invitrogen. Poly-L-lysine, pertussis toxin and B subunit were bought from
Sigma, chambered coverslips from Nalge Nunc. Anti-SKAP1 (clone 35) (#611236)
was from BD Transduction Laboratories, anti-V5 (#R960-25) (Invitrogen), anti-RapL
(#18-001-30078) (GenWay Biotech, Inc.), and anti-b-actin (clone AC-74) (#A2228)
(Sigma) were purchased as assigned. (All antibodies were used with a dilution of
1:1,000). Anti LFA-1 and anti-ICAM-1 were purchased from R &D. Alexa-488
conjugated goat anti-rabbit IgG and Alexa-568 conjugated goat anti-mouse IgG1
were purchased from Invitrogen. Poly-L-lysine, pertussis toxin and B subunit were
bought from Sigma, chambered coverslips from Nalge Nunc.

Constructs and transfection. Constructs of SKAP1 and GRB-2 were inserted into
a pGEX5x-3 (GE Healthcare), into a 3xFlag-tagged and EGFP-tagged pcDNA3.1-
Hygro (Invitrogen) vector. LAT and various mutants were cloned into a myc and
3xFlag-tagged pcDNA3.1 vector. PYK2 and FAK were cloned in a 3xFlag-tagged
vector. SKAP1 and PLCgamma1 were cloned in pSRalpha expression vector
in-frame with HA-tag. SLP-76 cDNA was sub-cloned in the pEYFP-N1 vector
(Clontech). Mutants were generated by site-directed mutagenesis using the Quick
Change protocol and Pfu Ultra II Fusion HS DNA Polymerase (Stratagene). All
constructs were confirmed by sequencing. Transfections were performed in 4mm
gap-cuvettes with the use of a BTX ECM 830 electroporator with a single pulse of
385 V and 6 ms. Cells were immediately transferred to pre-warmed complete
medium and allowed to recover for 24 h prior to analysis. FAK and PYK inhibitor
PF 431396 and PF 573228 were purchased from Tocris.

In situ PLA. In situ PLA was achieved using DuolinkTM in situ PLA reagents.
Cells on slides were blocked with Duolink Blocking stock followed by the
application of two PLA probes in 1x Antibody Diluent. Wash the slides in a wash
buffer (1# TBS-T) for 5 min, twice and carry out a hybridization using Duolink
Hybridization stock 1:5 in high-purity water and mix followed by incubation for
15 min at þ 37 !C. Duolink Ligation with ligase and incubation of the slides in a
pre-heated humidity chamber for 15 min at þ 37 !C. Amplification was then
achieved using Duolink Amplification stock and polymerase with incubation of the
slides in a pre-heated humidity chamber for 90 min at þ 37 !C. The quantification
was based on the counts of five different fields in each experiment (n¼ 4).

Immunoblotting. Precipitation was conducted by incubation of the lysate with the
antibody for 1 h at 4 !C, followed by incubation with 30 ml of protein G-Sepharose
beads (10% w/v) for 1 h at 4 !C as described8,37,38. Immunoprecipitates were
washed three times with ice-cold lysis buffer and subjected to SDS-PAGE. For
blotting, precipitates were separated by SDS-PAGE and transferred onto
nitrocellulose filters (Schleicher and Schuell). Bound antibody was revealed with
horseradish peroxidase-conjugated rabbit anti-mouse antibody using enhanced
chemiluminescence (Amersham Biosciences). For purification of membrane
fractions, Jurkat, DC27.10 or primary T cells were sheared in hypotonic buffer and
the nuclei removed by low-speed centrifugation (1,500 r.p.m., 10 min), and the
supernatant was recentrifuged at high speed (25,000 r.p.m.) for 1 h. The cytosolic
fraction comprised the supernatant, whereas membranes remained in the pellet.
The full length versions of the immunoblots in the paper is shown in
Supplementary Fig. 2.

GST pull-down assay. The expression of recombinant GST-proteins was induced
in Escherichia coli BL21 cells at 37 C for 2 h by the addition of 1 mM IPTG.
GST-fused proteins were purified with the Cell Lytic B protocol (Sigma #B7435).
Cell lysates were incubated with GST fusion proteins for 3 h followed by analysis
with SDS-PAGE and western blotting.

Integrin adhesion assay. Jurkat cells (1–2# 105 cells per well) were incubated
with 5 mM MgCl2þ and 1 mM EGTA for 15 min, were washed and assessed for
adhesion to immobilized ICAM-1-Fc-coated plates by incubating cells on plates for
30 min at 37 !C. Flat-bottomed 96-well plates had been coated previously with
4 mg ml" 1 murine ICAM-1 human Fc in PBS overnight at 4 !C, washed with RPMI
1640 medium, and blocked with 2.5% BSA in PBS for 1 h at 37 !C. Plates with
adhered cells were then gently washed twice with RPMI 1640 medium followed by
the counting of cells and photography of the plates74.

To measure the effect of soluble antibody or ICAM1-Fc binding on cells, Jurkat
cells were incubated with MgCl2/EDTA, soluble anti-LFA-1 Fab’ (1mg ml" 1),
soluble Fab’ plus MgCl2/EDTA or soluble anti-LFA-1 (1 mg ml" 1), for various
times followed by blotting with anti-pY171- LAT, anti-LAT, anti-pY-397-FAK,
anti-FAK or anti-pY-402-PYK2 and anti-PYK2. Similarly, cells were incubated
with soluble mono-valent ICAM1-Fc alone (2mg ml" 1), or in combination with
ICAM1-Fc MgCl2þ /EGTA over 5–20 min followed by blotting with antibodies to
Y-171 LAT or pY401-PYK2. The assay was performed in the absence of ICAM1 on
plates.
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Live cell imaging. Jurkat T cells were transfected with LAT-cherry and SKAP1-
GFP, and were imaged on anti-CD3 or anti-CD3-ICAM1-Fc coated cover slips. All
imaging assays were performed in Poly-L-lysine-treated chambered glass culture
slides (Lab-tek) as described56,57. Plates were coated with 5 mg ml" 1 anti-CD3
(OKT3) and 2 mg ml" 1 ICAM1-Fc overnight at 4 !C. Cells were imaged at the
interface using a Zeiss LSM 510 confocal microscope using excitation wavelengths
of 514 nm for EYFP and 594 nm for mcherry and a # 63 oil immersion objective
(NA¼ 1.2). Images were collected at 10 s intervals. Single Z sections were captured
over time to improve the rate of image acquisition. All images were processed by
Volocity software (Improvision). Standard deviations and standard errors were
calculated with the use of Microsoft Excel and GraphPad Prism. Differences
between means were tested using unpaired Student’s t- test.

Statistical analysis. Pearson’s correlation coefficients (Rr) were calculated by
intensity correlation analysis with ImageJ. Column statistics were performed with
GraphPad software (Prism). Paired and unpaired t-tests were performed to analyse
the data where appropriate. In certain instances, one-way analysis of variance
between groups followed by a series of t-tests. Mean values are shown and error
bars represent the s.e.m. In the statistical analysis, P values 40.05 are indicated as
nonsignificant (ns), P values between 0.01 and 0.001 are indicated by double
asterisks (**), and P values smaller than 0.001 are indicated by triple asterisks (***).

Data availability. Data supporting the findings in this study are available within
this article and from the corresponding author upon reasonable request.
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