38 research outputs found

    Architecting manned space exploration missions beyond low-earth orbit

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from department-submitted PDF version of thesisIncludes bibliographical references (p. 203-211).With the end of the Space Shuttle Program and the cancellation of the Constellation Program, NASA's long-term designs for manned spaceflight beyond Earth orbit remain indefinite. Although progress has been made in plans for operations on orbit, the capabilities gap for manned spaceflight beyond orbit has grown. Gaining an understanding of the trade-offs inherent in future system architectures for manned missions aids decision support for long-term planning of the spaceflight infrastructure. Assessments of such manned missions are particularly difficult due to the quantity of applicable technologies and potential component, sub-system, and system-level elements. Complex interactions between these technologies and elements lead to the need for high-fidelity analysis, requiring significant resource investments. NASA has typically turned to expert opinion and detailed point design studies to assess possible mission architectures, but recent developments in the field of systems architecture and computer science allow for the assessment of these architectures through system modeling techniques. This thesis presents a tool for the enumeration and analysis of system architectures for future manned missions to the Moon, Mars, and Near-Earth Asteroids (NEAs). An abstracted, solution-neutral formulation of the system allows for the analysis of the in-space transportation infrastructure portion of potential mission architectures through a unique functional decomposition and use of a decision formulation. Cost-based metrics are derived for the evaluation of architectures, representing both mass-based operations costs as well as development and procurement costs. The full combinatorial enumeration of the architecture tradespace generates a large data set on which to perform analysis. Rigorous techniques are used to derive decision influence information from this data. In-depth evaluation of Mars conjunction-class missions, with an emphasis on the assessment of highly influential architectural decisions, is presented, along with a more superficial treatment of lunar and NEA architectures. Mission architectures to these destinations are likely to require many new technologies and large-scale mission elements. In order to build confidence in these technologies and elements, precursor demonstration sub-missions (missions performed prior to the final surface mission) are often required. A tool is presented to leverage the results from the mission enumeration and evaluation model, exploring the tradespace of demonstration sub-mission sequences. In particular, this tool analyzes the grouping of technologies and mission elements to demonstrate. It also examines the use of Lagrange points as destinations for precursor sub-missions. Results from this tool are presented for lunar and low-energy NEA missions using metrics representing both individual sub-mission properties as well as sequence-level properties. Finally, a framework is presented for the construction of architecture-level complex system models. The development of this framework is based in knowledge gained from building the previously described tools as well as an academic background in system architecting. The framework directs professionals and academics in the process of designing complex system models with the intent of reducing gratuitous and modeling-induced complexity while retaining essential complexity. A brief case study is used to demonstrate the benefits gained from the use of the framework in comparison to unguided model creation.by Alexander August Rudat.S.M

    Technology Decisions Under Architectural Uncertainty: Informing Investment Decisions Through Tradespace Exploration

    Get PDF
    Although NASA has yet to choose an architecture for human spaceflight beyond Earth orbit, they must pursue near-term investment in the enabling technologies that will be required for these future systems. Given this architectural uncertainty, it is difficult to define the value proposition of technology investments. This paper proposes a method for evaluating technology across a tradespace defined by architectural decisions. Main effects analysis is taken from design of experiments to quantify the influence that a technology has on the system being considered. This analysis also identifies couplings between technologies that are mutually exclusive or mutually beneficial. This method is applied to the architecture tradespace of transportation for future human exploration at Mars with a set of possible propellant, propulsion, and aerobraking technologies. The paper demonstrates that the evaluation of technologies against an individual reference architecture is flawed when the range of architectures being pursued remains diverse. Furthermore, it is shown that comparisons between fuzzy Pareto optimal architectures and heavily dominated architectures will distort the evaluated benefit of a technology. The resulting tradespace can be structured as the sequence in which technology decisions should be made, in order of their impact on the tradespace and their coupling to other decisions.United States. National Aeronautics and Space Administration (Massachusetts Institute of Technology Research Grant

    Three Warm Jupiters around Solar-analog Stars Detected with TESS*

    Get PDF
    We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every ∼13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m _p = 9.30.2+0.2Mjup{9.3}_{-0.2}^{+0.2}\,{M}_{\mathrm{jup}} and a radius of r _p = 0.930.2+0.2Rjup{0.93}_{-0.2}^{+0.2}\,{R}_{\mathrm{jup}} . With a mean density of ρ=14.41.0+0.9gcm3\rho ={14.4}_{-1.0}^{+0.9}\,{\rm{g}}\,{\mathrm{cm}}^{-3} , TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of ∼8.3 days and an eccentricity of e = 0.320.02+0.02{0.32}_{-0.02}^{+0.02} . TOI-2416 b is more massive than Jupiter with m _p = 3.00.09+0.10Mjup{3.0}_{-0.09}^{+0.10}\,{M}_{\mathrm{jup}} , however is significantly smaller with a radius of r _p = 0.880.02+0.02,Rjup{0.88}_{-0.02}^{+0.02},{R}_{\mathrm{jup}} , leading to a high mean density of ρ=5.40.3+0.3gcm3\rho ={5.4}_{-0.3}^{+0.3}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every ∼7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m _p = 0.640.04+0.04Mjup{0.64}_{-0.04}^{+0.04}\,{M}_{\mathrm{jup}} , and is consistent with an inflated radius of r _p = 1.000.03+0.02Rjup{1.00}_{-0.03}^{+0.02}\,{R}_{\mathrm{jup}} , leading to a low mean density of ρ=0.790.08+0.08gcm3\rho ={0.79}_{-0.08}^{+0.08}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 86010+10{860}_{-10}^{+10} K, 108010+10{1080}_{-10}^{+10} K, and 110020+20{1100}_{-20}^{+20} K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 \ub1 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 \ub1 0.41 M⊕, 33.12 \ub1 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

    Full text link
    We report the discovery of TOI-1444b, a 1.4-RR_\oplus super-Earth on a 0.47-day orbit around a Sun-like star discovered by {\it TESS}. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87±0.71M3.87 \pm 0.71 M_\oplus. The RV dataset also indicates a possible non-transiting, 16-day planet (11.8±2.9M11.8\pm2.9M_\oplus). We report a tentative detection of phase curve variation and secondary eclipse of TOI-1444b in the {\it TESS} bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R<2R_\oplus) and contrast them with the newly discovered sub-day ultra-hot Neptunes (>3R>3R_\oplus, >2000F>2000F_\oplus TOI-849 b, LTT9779 b and K2-100). We find that 1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32±\pm0.04; and have masses below the threshold of runaway accretion (10M\sim 10M_\oplus), while ultra-hot Neptunes are above the threshold and have H/He or other volatile envelope. 2) USPs are almost always found in multi-planet system consistent with a secular interaction formation scenario; ultra-hot Neptunes (PorbP_{\rm orb} \lesssim1 day) tend to be ``lonely' similar to longer-period hot Neptunes(PorbP_{\rm orb}1-10 days) and hot Jupiters. 3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. 4) In all these respects, the ultra-hot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultra-hot Neptunes are rarer than both USP and hot Jupiters by 1-2 orders of magnitude.Comment: Accepted too AJ. 12 Figures, 4 table

    The TESS Grand Unified Hot Jupiter Survey. II. Twenty New Giant Planets

    Get PDF
    NASA's Transiting Exoplanet Survey Satellite (TESS) mission promises to improve our understanding of hot Jupiters by providing an all-sky, magnitude-limited sample of transiting hot Jupiters suitable for population studies. Assembling such a sample requires confirming hundreds of planet candidates with additional follow-up observations. Here, we present twenty hot Jupiters that were detected using TESS data and confirmed to be planets through photometric, spectroscopic, and imaging observations coordinated by the TESS Follow-up Observing Program (TFOP). These twenty planets have orbital periods shorter than 7 days and orbit relatively bright FGK stars (10.9<G<13.010.9 < G < 13.0). Most of the planets are comparable in mass to Jupiter, although there are four planets with masses less than that of Saturn. TOI-3976 b, the longest period planet in our sample (P=6.6P = 6.6 days), may be on a moderately eccentric orbit (e=0.18±0.06e = 0.18\pm0.06), while observations of the other targets are consistent with them being on circular orbits. We measured the projected stellar obliquity of TOI-1937A b, a hot Jupiter on a 22.4 hour orbit with the Rossiter-McLaughlin effect, finding the planet's orbit to be well-aligned with the stellar spin axis (λ=4.0±3.5|\lambda| = 4.0\pm3.5^\circ). We also investigated the possibility that TOI-1937 is a member of the NGC 2516 open cluster, but ultimately found the evidence for cluster membership to be ambiguous. These objects are part of a larger effort to build a complete sample of hot Jupiters to be used for future demographic and detailed characterization work.Comment: 67 pages, 11 tables, 13 figures, 2 figure sets. Resubmitted to ApJS after revision

    Three new brown dwarfs and a massive hot Jupiter revealed by TESS around early-type stars

    Get PDF
    Context. The detection and characterization of exoplanets and brown dwarfs around massive AF-type stars is essential to investigate and constrain the impact of stellar mass on planet properties. However, such targets are still poorly explored in radial velocity (RV) surveys because they only feature a small number of stellar lines and those are usually broadened and blended by stellar rotation as well as stellar jitter. As a result, the available information about the formation and evolution of planets and brown dwarfs around hot stars is limited. Aims. We aim to increase the sample and precisely measure the masses and eccentricities of giant planets and brown dwarfs transiting early-type stars detected by the Transiting Exoplanet Survey Satellite (TESS). Methods. We followed bright (V 6200 K that host giant companions (R > 7 R⊕) using ground-based photometric observations as well as high precision radial velocity measurements from the CORALIE, CHIRON, TRES, FEROS, and MINERVA-Australis spectrographs. Results. In the context of the search for exoplanets and brown dwarfs around early-type stars, we present the discovery of three brown dwarf companions, TOI-629b, TOI-1982b, and TOI-2543b, and one massive planet, TOI-1107b. From the joint analysis of TESS and ground-based photometry in combination with high precision radial velocity measurements, we find the brown dwarfs have masses between 66 and 68 MJup, periods between 7.54 and 17.17 days, and radii between 0.95 and 1.11 RJup. The hot Jupiter TOI-1107b has an orbital period of 4.08 days, a radius of 1.30 RJup, and a mass of 3.35 MJup. As a by-product of this program, we identified four low-mass eclipsing components (TOI-288b, TOI-446b, TOI-478b, and TOI-764b). Conclusions. Both TOI-1107b and TOI-1982b present an anomalously inflated radius with respect to the age of these systems. TOI-629 is among the hottest stars with a known transiting brown dwarf. TOI-629b and TOI-1982b are among the most eccentric brown dwarfs. The massive planet and the three brown dwarfs add to the growing population of well-characterized giant planets and brown dwarfs transiting AF-type stars and they reduce the apparent paucity
    corecore