19 research outputs found
Improving the Value of Standard Toxicity Test Data in REACH
Worldwide, environmental risk assessment strategies are based on the assumption that measuring direct effects of single substances, using a few single species tests, in combination with safety factors correcting for extrapolation inconsistencies, can be used to protect higher levels of biological organization, such as populations and even ecosystems. At the same time, we are currently facing a range of pollution problems (Millennium Ecosystem Assessment Series 2005), of which some could at least indirectly be linked to the fact that this assumption may not be fully valid. Consequently, there is an ongoing scientific debate on whether current chemical control protocols are sufficient for protection of ecosystems, and numerous suggestions for improvements have been presented by the scientific community, e.g. alternative tests and testing strategies. On the other hand, few of these suggestions actually reach the regulatory world (or become implemented), and risk assessment today basically follows the same paradigm as 30 years ago. While the new REACH regime is exceptionally ambitious, this chapter observes several problems and gaps in this regulatory framework. We suggest measures and approaches which imply increased ecological realism and understanding in future regulatory work
From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures
Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay. © 2022 American Association for the Advancement of Science. All rights reserved