3 research outputs found

    Biochemical Characteristics and a Genome-Scale Metabolic Model of an Indian Euryhaline Cyanobacterium with High Polyglucan Content

    No full text
    Marine cyanobacteria are promising microbes to capture and convert atmospheric CO2 and light into biomass and valuable industrial bio-products. Yet, reports on metabolic characteristics of non-model cyanobacteria are scarce. In this report, we show that an Indian euryhaline Synechococcus sp. BDU 130192 has biomass accumulation comparable to a model marine cyanobacterium and contains approximately double the amount of total carbohydrates, but significantly lower protein levels compared to Synechococcus sp. PCC 7002 cells. Based on its annotated chromosomal genome sequence, we present a genome scale metabolic model (GSMM) of this cyanobacterium, which we have named as iSyn706. The model includes 706 genes, 908 reactions, and 900 metabolites. The difference in the flux balance analysis (FBA) predicted flux distributions between Synechococcus sp. PCC 7002 and Synechococcus sp. BDU130192 strains mimicked the differences in their biomass compositions. Model-predicted oxygen evolution rate for Synechococcus sp. BDU130192 was found to be close to the experimentally-measured value. The model was analyzed to determine the potential of the strain for the production of various industrially-useful products without affecting growth significantly. This model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for the production of industrially-relevant compounds
    corecore