1,359 research outputs found

    GRB observations by Fermi LAT revisited: new candidates found

    Full text link
    We search the Fermi-LAT photon database for an extended gamma-ray emission which could be associated with any of the 581 previously detected gamma-ray bursts (GRBs) visible to the Fermi-LAT. For this purpose we compare the number of photons with energies E > 100 MeV and E > 1 GeV which arrived in the first 1500 seconds after the burst from the same region, to the expected background. We require that the expected number of false detections does not exceed 0.05 for the entire search and find the high-energy emission in 19 bursts, four of which (GRB 081009, GRB 090720B, GRB 100911 and GRB 100728A) were previously unreported. The first three are detected at energies above 100 MeV, while the last one shows a statistically significant signal only above 1 GeV.Comment: Updated after referee comments, published in MNRAS Letters; 5 pages, 2 table

    Analytical approximation for single-impurity Anderson model

    Get PDF
    We have applied the recently developed dual fermion technique to the spectral properties of single-band Anderson impurity problem (SIAM). In our approach a series expansion is constructed in vertices of the corresponding atomic Hamiltonian problem. This expansion contains a small parameter in two limiting cases: in the weak coupling case (U/t→0U/t \to 0), due to the smallness of the irreducible vertices, and near the atomic limit (U/t→∞U/t \to \infty), when bare propagators are small. Reasonable results are obtained also for the most interesting case of strong correlations (U≈tU \approx t). The atomic problem of the Anderson impurity model has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the renormalized atomic problem. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. Most of the Kondo-physics is reproduced: logarithmic contributions to the self energy arise, Kondo-like peak at the Fermi level appears, and the Friedel sum rule is fulfilled. Our approach describes also renormalization of atomic resonances due to hybridization with a conduction band. A generalization of the proposed scheme to a multi-orbital case can be important for the realistic description of correlated solids.Comment: 6 pages, 5 figure

    Classical modelling of a bosonic sampler with photon collisions

    Full text link
    When the problem of boson sampling was first proposed, it was assumed that little or no photon collisions occur. However, modern experimental realizations rely on setups where collisions are quite common, i.e. the number of photons MM injected into the circuit is close to the number of detectors NN. Here we present a classical algorithm that simulates a bosonic sampler: it calculates the probability of a given photon distribution at the interferometer outputs for a given distribution at the inputs. This algorithm is most effective in cases with multiple photon collisions, and in those cases it outperforms known algorithms
    • …
    corecore