11,328 research outputs found

    Non-equilibrium GW approach to quantum transport in nano-scale contacts

    Get PDF
    Correlation effects within the GW approximation have been incorporated into the Keldysh non-equilibrium transport formalism. We show that GW describes the Kondo effect and the zero-temperature transport properties of the Anderson model fairly well. Combining the GW scheme with density functional theory and a Wannier function basis set, we illustrate the impact of correlations by computing the I-V characteristics of a hydrogen molecule between two Pt chains. Our results indicate that self-consistency is fundamental for the calculated currents, but that it tends to wash out satellite structures in the spectral function.Comment: 5 pages, 4 figure

    Oscillations of Thick Accretion Discs Around Black Holes - II

    Full text link
    We present a numerical study of the global modes of oscillation of thick accretion discs around black holes. We have previously studied the case of constant distributions of specific angular momentum. In this second paper, we investigate (i) how the size of the disc affects the oscillation eigenfrequencies, and (ii) the effect of power-law distributions of angular momentum on the oscillations. In particular, we compare the oscillations of the disc with the epicyclic eigenfrequencies of a test particle with different angular momentum distributions orbiting around the central object. We find that there is a frequency shift away from the epicyclic eigenfrequency of the test particle to lower values as the size of the tori is increased. We have also studied the response of a thick accretion disc to a localized external perturbation using non constant specific angular momentum distributions within the disc. We find that in this case it is also possible (as reported previously for constant angular momentum distributions) to efficiently excite internal modes of oscillation. In fact we show here that the local perturbations excite global oscillations (acoustic p modes) closely related to the epicyclic oscillations of test particles. Our results are particularly relevant in the context of low mass X-ray binaries and microquasars, and the high frequency Quasi-Periodic Oscillations (QPOs) observed in them. Our computations make use of a Smooth Particle Hydrodynamics (SPH) code in azimuthal symmetry, and use a gravitational potential that mimics the effects of strong gravity.Comment: 10 pages, 8 figures, accepted for publication as a paper in the Monthly Notices of the Royal Astronomical Societ

    Oscillations of Thick Accretion Discs Around Black Holes

    Full text link
    We present a numerical study of the response of a thick accretion disc to a localized, external perturbation with the aim of exciting internal modes of oscillation. We find that the perturbations efficiently excite global modes recently identified as acoustic p--modes, and closely related to the epicyclic oscillations of test particles. The two strongest modes occur at eigenfrequencies which are in a 3:2 ratio. We have assumed a constant specific angular momentum distribution within the disc. Our models are in principle scale--free and can be used to simulate accretion tori around stellar or super massive black holes.Comment: 4 pages, 4 figures, accepted for publication as a letter in the Monthly Notices of the Royal Astronomical Societ

    Short-Time Critical Dynamics of Damage Spreading in the Two-Dimensional Ising Model

    Full text link
    The short-time critical dynamics of propagation of damage in the Ising ferromagnet in two dimensions is studied by means of Monte Carlo simulations. Starting with equilibrium configurations at T=T= \infty and magnetization M=0M=0, an initial damage is created by flipping a small amount of spins in one of the two replicas studied. In this way, the initial damage is proportional to the initial magnetization M0M_0 in one of the configurations upon quenching the system at TCT_C, the Onsager critical temperature of the ferromagnetic-paramagnetic transition. It is found that, at short times, the damage increases with an exponent θD=1.915(3)\theta_D=1.915(3), which is much larger than the exponent θ=0.197\theta=0.197 characteristic of the initial increase of the magnetization M(t)M(t). Also, an epidemic study was performed. It is found that the average distance from the origin of the epidemic (R2(t)\langle R^2(t)\rangle) grows with an exponent zη1.9z^* \approx \eta \approx 1.9, which is the same, within error bars, as the exponent θD\theta_D. However, the survival probability of the epidemics reaches a plateau so that δ=0\delta=0. On the other hand, by quenching the system to lower temperatures one observes the critical spreading of the damage at TD0.51TCT_{D}\simeq 0.51 T_C, where all the measured observables exhibit power laws with exponents θD=1.026(3)\theta_D = 1.026(3), δ=0.133(1)\delta = 0.133(1), and z=1.74(3)z^*=1.74(3).Comment: 11 pages, 9 figures (included). Phys. Rev. E (2010), in press

    Volume change of bulk metals and metal clusters due to spin-polarization

    Full text link
    The stabilized jellium model (SJM) provides us a method to calculate the volume changes of different simple metals as a function of the spin polarization, ζ\zeta, of the delocalized valence electrons. Our calculations show that for bulk metals, the equilibrium Wigner-Seitz (WS) radius, rˉs(ζ)\bar r_s(\zeta), is always a n increasing function of the polarization i.e., the volume of a bulk metal always increases as ζ\zeta increases, and the rate of increasing is higher for higher electron density metals. Using the SJM along with the local spin density approximation, we have also calculated the equilibrium WS radius, rˉs(N,ζ)\bar r_s(N,\zeta), of spherical jellium clusters, at which the pressure on the cluster with given numbers of total electrons, NN, and their spin configuration ζ\zeta vanishes. Our calculations f or Cs, Na, and Al clusters show that rˉs(N,ζ)\bar r_s(N,\zeta) as a function of ζ\zeta behaves differently depending on whether NN corresponds to a closed-shell or an open-shell cluster. For a closed-shell cluster, it is an increasing function of ζ\zeta over the whole range 0ζ10\le\zeta\le 1, whereas in open-shell clusters it has a decreasing behavior over the range 0ζζ00\le\zeta\le\zeta_0, where ζ0\zeta_0 is a polarization that the cluster has a configuration consistent with Hund's first rule. The resu lts show that for all neutral clusters with ground state spin configuration, ζ0\zeta_0, the inequality rˉs(N,ζ0)rˉs(0)\bar r_s(N,\zeta_0)\le\bar r_s(0) always holds (self-compression) but, at some polarization ζ1>ζ0\zeta_1>\zeta_0, the inequality changes the direction (self-expansion). However, the inequality rˉs(N,ζ)rˉs(ζ)\bar r_s(N,\zeta)\le\bar r_s(\zeta) always holds and the equality is achieved in the limit NN\to\infty.Comment: 7 pages, RevTex, 10 figure

    hh-AlN-Mg(OH)2_{2} vdW Bilayer Heterostructure: Tuning the excitonic characteristics

    Get PDF
    Motivated by recent studies that reported the successful synthesis of monolayer Mg(OH)2_{2} [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525 (2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys. Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and optical properties of vertically stacked hh-AlN and Mg(OH)2_{2}, through \textit{ab initio} density-functional theory (DFT), many-body quasi-particle calculations within the GW approximation, and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the ABAB^{\prime} stacking having direct band gap at the Γ\Gamma with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and hetero-bilayer are investigated. The hetero-bilayer possesses excitonic peaks which appear only after the construction of the hetero-bilayer. The lowest three exciton peaks are detailedly analyzed by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the hetero-bilayer originates from spatially indirect exciton where the electron and hole localized at hh-AlN and Mg(OH)2_{2}, respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review

    Conserving GW scheme for nonequilibrium quantum transport in molecular contacts

    Get PDF
    We give a detailed presentation of our recent scheme to include correlation effects in molecular transport calculations using the GW approximation within the non-equilibrium Keldysh formalism. We restrict the GW self-energy to the central region, and describe the leads by density functional theory (DFT). A minimal basis of maximally localized Wannier functions is applied both in the central GW region and the leads. The importance of using a conserving, i.e. fully self-consistent, GW self-energy is demonstrated both analytically and by numerical examples. We introduce an effective spin-dependent interaction which automatically reduces self-interaction errors to all orders in the interaction. The scheme is applied to the Anderson model in- and out of equilibrium. In equilibrium at zero temperature we find that GW describes the Kondo resonance fairly well for intermediate interaction strengths. Out of equilibrium we demonstrate that the one-shot G0W0 approximation can produce severe errors, in particular at high bias. Finally, we consider a benzene molecule between featureless leads. It is found that the molecule's HOMO-LUMO gap as calculated in GW is significantly reduced as the coupling to the leads is increased, reflecting the more efficient screening in the strongly coupled junction. For the IV characteristics of the junction we find that HF and G0W0[G_HF] yield results closer to GW than does DFT and G0W0[G_DFT]. This is explained in terms of self-interaction effects and life-time reduction due to electron-electron interactions.Comment: 23 pages, 16 figure

    Dynamics of quartz tuning fork force sensors used in scanning probe microscopy

    Full text link
    We have performed an experimental characterization of the dynamics of oscillating quartz tuning forks which are being increasingly used in scanning probe microscopy as force sensors. We show that tuning forks can be described as a system of coupled oscillators. Nevertheless, this description requires the knowledge of the elastic coupling constant between the prongs of the tuning fork, which has not yet been measured. Therefore tuning forks have been usually described within the single oscillator or the weakly coupled oscillators approximation that neglects the coupling between the prongs. We propose three different procedures to measure the elastic coupling constant: an opto-mechanical method, a variation of the Cleveland method and a thermal noise based method. We find that the coupling between the quartz tuning fork prongs has a strong influence on the dynamics and the measured motion is in remarkable agreement with a simple model of coupled harmonic oscillators. The precise determination of the elastic coupling between the prongs of a tuning fork allows to obtain a quantitative relation between the resonance frequency shift and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table

    Multi-physics simulations with Octopus

    Get PDF
    corecore