55 research outputs found

    Effects of amyloid and tau pathology on brain function and cognition in Alzheimer's disease

    Get PDF

    The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory

    Get PDF
    The single nucleotide polymorphism (SNP) rs744373 in the bridging integrator-1 gene (BIN1) is a risk factor for Alzheimer's disease (AD). In the brain, BIN1 is involved in endocytosis and sustaining cytoskeleton integrity. Post-mortem and in vitro studies suggest that BIN1-associated AD risk is mediated by increased tau pathology but whether rs744373 is associated with increased tau pathology in vivo is unknown. Here we find in 89 older individuals without dementia, that BIN1 rs744373 risk-allele carriers show higher AV1451 tau-PET across brain regions corresponding to Braak stages II-VI. In contrast, the BIN1 rs744373 SNP was not associated with AV45 amyloid-PET uptake. Furthermore, the rs744373 risk-allele was associated with worse memory performance, mediated by increased global tau levels. Together, our findings suggest that the BIN1 rs744373 SNP is associated with increased tau but not beta-amyloid pathology, suggesting that alterations in BIN1 may contribute to memory deficits via increased tau pathology

    Age‐dependent amyloid deposition is associated with white matter alterations in cognitively normal adults during the adult life span

    Get PDF
    Introduction Both beta‐amyloid (Ab) deposition and decline in white matter integrity, are brain alterations observed in Alzheimer's disease (AD) and start to occur by the fourth and fifth decades. However, the association between both brain alterations in asymptomatic subjects is unclear. Methods Amyloid positron emission tomography (PET) and diffusion tensor imaging (DTI) were obtained in 282 cognitively normal subjects (age 30‐89 years). We assessed the interaction of age by abnormal amyloid PET status (Florbetapir F‐18 PET >1.2 standard uptake value ratio [SUVR]) on regional mean diffusivity (MD) and global white matter hyperintensity (WMH) volume, controlled for sex, education, and hypertension. Results Subjects with abnormal amyloid PET (n = 87) showed stronger age‐related increase in global WMH and regional MD, particularly within the posterior parietal regions of the white matter. Discussion Sporadic Aβ deposition is associated with white matter alterations in AD predilection areas in an age‐dependent manner in cognitively normal individuals

    sTREM2 is associated with amyloid‐related p‐tau increases and glucose hypermetabolism in Alzheimer's disease

    Get PDF
    Microglial activation occurs early in Alzheimer's disease (AD) and previous studies reported both detrimental and protective effects of microglia on AD progression. Here, we used CSF sTREM2 to investigate disease stage‐dependent drivers of microglial activation and to determine downstream consequences on AD progression. We included 402 patients with measures of earliest beta‐amyloid (CSF Aβ1‐42) and late‐stage fibrillary Aβ pathology (amyloid‐PET centiloid), as well as sTREM2, p‐tau181, and FDG‐PET. To determine disease stage, we stratified participants into early Aβ‐accumulators (Aβ CSF+/PET−; n = 70) or late Aβ‐accumulators (Aβ CSF+/PET+; n = 201) plus 131 controls. In early Aβ‐accumulators, higher centiloid was associated with cross‐sectional/longitudinal sTREM2 and p‐tau181 increases. Further, higher sTREM2 mediated the association between centiloid and cross‐sectional/longitudinal p‐tau181 increases and higher sTREM2 was associated with FDG‐PET hypermetabolism. In late Aβ‐accumulators, we found no association between centiloid and sTREM2 but a cross‐sectional association between higher sTREM2, higher p‐tau181 and glucose hypometabolism. Our findings suggest that a TREM2‐related microglial response follows earliest Aβ fibrillization, manifests in inflammatory glucose hypermetabolism and may facilitate subsequent p‐tau181 increases in earliest AD

    Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals

    Get PDF
    BACKGROUND To systematically examine the clinical utility of tau-PET and Braak-staging as prognostic markers of future cognitive decline in older adults with and without cognitive impairment. METHODS In this longitudinal study, we included 396 cognitively normal to dementia subjects with 18F-Florbetapir/18F-Florbetaben-amyloid-PET, 18F-Flortaucipir-tau-PET and \~ 2-year cognitive follow-up. Annual change rates in global cognition (i.e., MMSE, ADAS13) and episodic memory were calculated via linear-mixed models. We determined global amyloid-PET (Centiloid) plus global and Braak-stage-specific tau-PET SUVRs, which were stratified as positive(+)/negative(-) at pre-established cut-offs, classifying subjects as Braak0/BraakI+/BraakI-IV+/BraakI-VI+/Braakatypical+. In bootstrapped linear regression, we assessed the predictive accuracy of global tau-PET SUVRs vs. Centiloid on subsequent cognitive decline. To test for independent tau vs. amyloid effects, analyses were further controlled for the contrary PET-tracer. Using ANCOVAs, we tested whether more advanced Braak-stage predicted accelerated future cognitive decline. All models were controlled for age, sex, education, diagnosis, and baseline cognition. Lastly, we determined Braak-stage-specific conversion risk to mild cognitive impairment (MCI) or dementia. RESULTS Baseline global tau-PET SUVRs explained more variance (partial R2) in future cognitive decline than Centiloid across all cognitive tests (Cohen's d \~ 2, all tests p < 0.001) and diagnostic groups. Associations between tau-PET and cognitive decline remained consistent when controlling for Centiloid, while associations between amyloid-PET and cognitive decline were non-significant when controlling for tau-PET. More advanced Braak-stage was associated with gradually worsening future cognitive decline, independent of Centiloid or diagnostic group (p < 0.001), and elevated conversion risk to MCI/dementia. CONCLUSION Tau-PET and Braak-staging are highly predictive markers of future cognitive decline and may be promising single-modality estimates for prognostication of patient-specific progression risk in clinical settings

    KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease

    Get PDF
    Klotho-VS heterozygosity (KL-VShet) is associated with reduced risk of Alzheimer's disease (AD). However, whether KL-VShet is associated with lower levels of pathologic tau, i.e., the key AD pathology driving neurodegeneration and cognitive decline, is unknown. Here, we assessed the interaction between KL-VShet and levels of beta-amyloid, a key driver of tau pathology, on the levels of PET-assessed neurofibrillary tau in 551 controls and patients across the AD continuum. KL-VShet showed lower cross-sectional and longitudinal increase in tau-PET per unit increase in amyloid-PET when compared to that of non-carriers. This association of KL-VShet on tau-PET was stronger in Klotho mRNA-expressing brain regions mapped onto a gene expression atlas. KL-VShet was related to better memory functions in amyloid-positive participants and this association was mediated by lower tau-PET. Amyloid-PET levels did not differ between KL-VShet carriers versus non-carriers. Together, our findings provide evidence to suggest a protective role of KL-VShet against amyloid-related tau pathology and tau-related memory impairments in elderly humans at risk of AD dementia

    Combined Connectomics, MAPT Gene Expression, and Amyloid Deposition to Explain Regional Tau Deposition in Alzheimer Disease

    Get PDF
    Objective We aimed to test whether region-specific factors, including spatial expression patterns of the tau-encoding gene MAPT and regional levels of amyloid positron emission tomography (PET), enhance connectivity-based modeling of the spatial variability in tau-PET deposition in the Alzheimer disease (AD) spectrum. Methods We included 685 participants (395 amyloid-positive participants within AD spectrum and 290 amyloid-negative controls) with tau-PET and amyloid-PET from 3 studies (Alzheimer's Disease Neuroimaging Initiative, 18F-AV-1451-A05, and BioFINDER-1). Resting-state functional magnetic resonance imaging was obtained in healthy controls (n = 1,000) from the Human Connectome Project, and MAPT gene expression from the Allen Human Brain Atlas. Based on a brain-parcellation atlas superimposed onto all modalities, we obtained region of interest (ROI)-to-ROI functional connectivity, ROI-level PET values, and MAPT gene expression. In stepwise regression analyses, we tested connectivity, MAPT gene expression, and amyloid-PET as predictors of group-averaged and individual tau-PET ROI values in amyloid-positive participants. Results Connectivity alone explained 21.8 to 39.2% (range across 3 studies) of the variance in tau-PET ROI values averaged across amyloid-positive participants. Stepwise addition of MAPT gene expression and amyloid-PET increased the proportion of explained variance to 30.2 to 46.0% and 45.0 to 49.9%, respectively. Similarly, for the prediction of patient-level tau-PET ROI values, combining all 3 predictors significantly improved the variability explained (mean adjusted R2 range across studies = 0.118–0.148, 0.156–0.196, and 0.251–0.333 for connectivity alone, connectivity plus MAPT expression, and all 3 modalities combined, respectively). Interpretation Across 3 study samples, combining the functional connectome and molecular properties substantially enhanced the explanatory power compared to single modalities, providing a valuable tool to explain regional susceptibility to tau deposition in AD. ANN NEUROL 202

    Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities:A multicenter study in 3132 memory clinic patients

    Get PDF
    INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume.RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p &lt; 0.001), external capsule (B = 0.052, p &lt; 0.001), and middle cerebellar peduncle (B = 0.067, p &lt; 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p &lt; 0.001) and splenium (B = 0.103, p &lt; 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. Highlights: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.</p

    Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts

    Get PDF
    Introduction: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as unusual, but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. Methods: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. Results: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. Discussion: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered
    corecore