3,108 research outputs found

    Spatiotemporal Properties of Sub‐Rayleigh and Supershear Ruptures Inferred From Full‐Field Dynamic Imaging of Laboratory Experiments

    Get PDF
    Many earthquakes propagate at sub‐Rayleigh speeds. Earthquakes propagating at supershear speeds, though less common, are by far more destructive. Hence, it is important to quantify the motion characteristics associated with both types of earthquake ruptures. Here we report on the spatiotemporal properties of dynamic ruptures measured in our laboratory experiments using the dynamic digital image correlation technique. Earthquakes are mimicked by the frictional rupture propagating along the interface of two Homalite plates. Digital images of the propagating ruptures are captured by an ultrahigh‐speed camera and processed with digital image correlation in order to produce sequences of evolving displacement and velocity maps. Our measurements reveal the full‐field structure of the velocity components, bridge the gap between previous spatially sparse velocimeter measurements available only at two to three locations, and enable us to quantify the attenuation patterns away from the interface

    Recent Milestones in Unraveling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real-Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation

    Get PDF
    The last few decades have seen great achievements in dynamic fracture mechanics. Yet, it was not possible to experimentally quantify the full-field behavior of dynamic fractures, until very recently. Here, we review our recent work on the full-field quantification of the temporal evolution of dynamic shear ruptures. Our newly developed approach based on digital image correlation combined with ultrahigh-speed photography has revolutionized the capabilities of measuring highly transient phenomena and enabled addressing key ques- tions of rupture dynamics. Recent milestones include the visualization of the complete displacement, particle velocity, strain, stress and strain rate fields near growing ruptures, capturing the evolution of dynamic friction during individual rupture growth, and the detailed study of rupture speed limits. For example, dynamic friction has been the big- gest unknown controlling how frictional ruptures develop but it has been impossible, until now, to measure dynamic friction during spontaneous rupture propagation and to understand its dependence on other quantities. Our recent measurements allow, by simul- taneously tracking tractions and sliding speeds on the rupturing interface, to disentangle its complex dependence on the slip, slip velocity, and on their history. In another application, we have uncovered new phenomena that could not be detected with previous methods, such as the formation of pressure shock fronts associated with “supersonic” propagation of shear ruptures in viscoelastic materials where the wave speeds are shown to depend strongly on the strain rate

    Improved CMB anisotropy constraints on primordial magnetic fields from the post-recombination ionization history

    Get PDF
    We investigate the impact of a stochastic background of Primordial Magnetic Fields (PMF) generated before recombination on the ionization history of the Universe and on the Cosmic Microwave Background radiation (CMB). Pre-recombination PMFs are dissipated during recombination and reionization via decaying MHD turbulence and ambipolar diffusion. This modifies the local matter and electron temperatures and thus affects the ionization history and Thomson visibility function. We use this effect to constrain PMFs described by a spectrum of power-law type, extending our previous study (based on a scale-invariant spectrum) to arbitrary spectral index. We derive upper bounds on the integrated amplitude of PMFs due to the separate effect of ambipolar diffusion and MHD decaying turbulence and their combination. We show that ambipolar diffusion is relevant for nB>0n_{\rm B}>0 whereas for nB<0n_{\rm B}<0 MHD turbulence is more important. The bound marginalized over the spectral index on the integrated amplitude of PMFs with a sharp cut-off is ⟹B2⟩<0.83\sqrt{\langle B^2 \rangle}<0.83 nG. We discuss the quantitative relevance of the assumptions on the damping mechanism and the comparison with previous bounds.Comment: 11 pages, 21 figures. Minor updates to match the published versio

    On the Presence of Thermal SZ Induced Signal in the First Year WMAP Temperature Maps

    Full text link
    Using available optical and X-ray catalogues of clusters and superclusters of galaxies, we build templates of tSZ emission as they should be detected by the WMAP experiment. We compute the cross-correlation of our templates with WMAP temperature maps, and interpret our results separately for clusters and for superclusters of galaxies. For clusters of galaxies, we claim 2-5 σ\sigma detections in our templates built from BCS Ebeling et al. (1998), NORAS (Boehringer et al. 2000) and de Grandi et al. (1999) catalogues. In these templates, the typical cluster temperature decrements in WMAP maps are around 15-35 ÎŒ\muK in the RJ range (no beam deconvolution applied). Several tests probing the possible influence of foregrounds in our analyses demonstrate that our results are robust against galactic contamination. On supercluster scales, we detect a diffuse component in the V & W WMAP bands which cannot be generated by superclusters in our catalogues (Einasto et al. 1994, 1997), and which is not present in the clean map of Tegmark, de Oliveira-Costa & Hamilton (2003). Using this clean map, our analyses yield, for Einasto's supercluster catalogues, the following upper limit for the comptonization parameter associated to supercluster scales: y_{SC} < 2.18 \time s 10^{-8} at the 95% confidence limit.Comment: MNRAS accepted. New section and minor changes include

    Limits on Hot Intracluster Gas Contributions to the Tenerife Temperature Anisotropy Map

    Get PDF
    We limit the contribution of the hot intracluster gas, by means of the Sunyaev-Zel'dovich effect, to the temperature anisotropies measured by the Tenerife experiment. The data is cross-correlated with maps generated from the ACO cluster catalogue, the ROSAT PSPC catalogue of clusters of galaxies, a catalogue of superclusters and the HEAO 1 A-1 map of X-ray sources. There is no evidence of contamination by such sources at an rms level of ∌8ÎŒ\sim 8\muK at 99% confidence level at 5o5^o angular resolution. We place an upper limit on the mean Comptonization parameter of y≀1.5×10−6 y \le 1.5\times 10^{-6} at the same level of confidence. These limits are slightly more restrictive than those previously found by a similar analysis on the COBE/DMR data and indicate that most of the signal measured by Tenerife is cosmological.Comment: To be published in ApJ (main journal

    Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks

    Get PDF
    Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas-water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighbouring regions can exhibit different levels of saturation. To determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. The multiscale nature of the fluid saturation is taken into account by locally computing the physical properties of an effective fluid, which are then used for the larger-scale simulations. We consider two sets of numerical experiments to analyse such effects in heterogeneous partially saturated porous media, where the saturation field is determined by variations in porosity and clay content, respectively. In both cases we also evaluate the seismic responses of corresponding binary, patchy-type saturation patterns. Our results indicate that significant attenuation and modest velocity dispersion effects take place in this kind of media for both binary patchy-type and spatially continuous gas saturation patterns and in particular in the presence of relatively small amounts of gas. The numerical experiments also show that the nature of the gas distribution patterns is a critical parameter controlling the seismic responses of these environments, since attenuation and velocity dispersion effects are much more significant and occur over a broader saturation range for binary patchy-type gas-water distributions. This analysis therefore suggests that the physical mechanisms governing partial saturation should be accounted for when analysing seismic data in a poroelastic framework. In this context, heterogeneities associated with the dry frame properties, which do not play important roles in wave-induced fluid flow processes per se, should be taken into account since they may determine the kind of gas distribution pattern taking place in the porous roc
    • 

    corecore