568 research outputs found
Testing Linear-Invariant Non-Linear Properties
We consider the task of testing properties of Boolean functions that are
invariant under linear transformations of the Boolean cube. Previous work in
property testing, including the linearity test and the test for Reed-Muller
codes, has mostly focused on such tasks for linear properties. The one
exception is a test due to Green for "triangle freeness": a function
f:\cube^{n}\to\cube satisfies this property if do not all
equal 1, for any pair x,y\in\cube^{n}.
Here we extend this test to a more systematic study of testing for
linear-invariant non-linear properties. We consider properties that are
described by a single forbidden pattern (and its linear transformations), i.e.,
a property is given by points v_{1},...,v_{k}\in\cube^{k} and
f:\cube^{n}\to\cube satisfies the property that if for all linear maps
L:\cube^{k}\to\cube^{n} it is the case that do
not all equal 1. We show that this property is testable if the underlying
matroid specified by is a graphic matroid. This extends
Green's result to an infinite class of new properties.
Our techniques extend those of Green and in particular we establish a link
between the notion of "1-complexity linear systems" of Green and Tao, and
graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the
proceedings of STACS 200
Testing formula satisfaction
We study the query complexity of testing for properties defined by read once formulae, as instances of massively parametrized properties, and prove several testability and non-testability results. First we prove the testability of any property accepted by a Boolean read-once formula involving any bounded arity gates, with a number of queries exponential in \epsilon and independent of all other parameters. When the gates are limited to being monotone, we prove that there is an estimation algorithm, that outputs an approximation of the distance of the input from
satisfying the property. For formulae only involving And/Or gates, we provide a more efficient test whose query complexity is only quasi-polynomial in \epsilon. On the other hand we show that such testability results do not hold in general for formulae over non-Boolean alphabets; specifically we construct a property defined by a read-once arity 2 (non-Boolean) formula over alphabets of size 4, such that any 1/4-test for it requires a number of queries depending on the formula size
Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs
For a graph , let be the partition function of the
monomer-dimer system defined by , where is the
number of matchings of size in . We consider graphs of bounded degree
and develop a sublinear-time algorithm for estimating at an
arbitrary value within additive error with high
probability. The query complexity of our algorithm does not depend on the size
of and is polynomial in , and we also provide a lower bound
quadratic in for this problem. This is the first analysis of a
sublinear-time approximation algorithm for a # P-complete problem. Our
approach is based on the correlation decay of the Gibbs distribution associated
with . We show that our algorithm approximates the probability
for a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results to
approximate the average size and the entropy of such a matching within an
additive error with high probability, where again the query complexity is
polynomial in and the lower bound is quadratic in .
Our algorithms are simple to implement and of practical use when dealing with
massive datasets. Our results extend to other systems where the correlation
decay is known to hold as for the independent set problem up to the critical
activity
The Distributional Impact of Statewide Property Tax Relief: the Michigan Case
This study uses data from a random survey of 2001 Michigan households to analyze the extent to which the Michigan ctreuit-breaker has been successful in reducing the income regressivity of the property tax and in changing relative property tax burdens. Because of its relatively extensive coverage, including renters as well as homeowners and the nonaged as well as the aged, the circuit-breaker has yielded a more equal distribution of income within Michigan. Its potential to change the distribution of income depends on the particular formula utilized, but redistributional effects have thus far been lamited because program participation has been positively correlated with income. To the extent that reductions in the price ofpublic services created by the circuit-breaker are perceived by households, the biggest stimulus appears to be in high property tax/high-income countiesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68848/2/10.1177_109114218301100201.pd
Logarithmic Communication for Distributed Optimization in Multi-Agent Systems
Classically, the design of multi-agent systems is approached using techniques from distributed optimization such as dual descent and consensus algorithms. Such algorithms depend on convergence to global consensus before any individual agent can determine its local action. This leads to challenges with respect to communication overhead and robustness, and improving algorithms with respect to these measures has been a focus of the community for decades.
This paper presents a new approach for multi-agent system design based on ideas from the emerging field of local computation algorithms. The framework we develop, LOcal Convex Optimization (LOCO), is the first local computation algorithm for convex optimization problems and can be applied in a wide-variety of settings. We demonstrate the generality of the framework via applications to Network Utility Maximization (NUM) and the distributed training of Support Vector Machines (SVMs), providing numerical results illustrating the improvement compared to classical distributed optimization approaches in each case
A study of patent thickets
Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area
Testing non-uniform k-wise independent distributions over product spaces (extended abstract)
A distribution D over Σ1× ⋯ ×Σ n is called (non-uniform) k-wise independent if for any set of k indices {i 1, ..., i k } and for any z1zki1ik, PrXD[Xi1Xik=z1zk]=PrXD[Xi1=z1]PrXD[Xik=zk]. We study the problem of testing (non-uniform) k-wise independent distributions over product spaces. For the uniform case we show an upper bound on the distance between a distribution D from the set of k-wise independent distributions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. Such a bound was previously known only for the binary field. For the non-uniform case, we give a new characterization of distributions being k-wise independent and further show that such a characterization is robust. These greatly generalize the results of Alon et al. [1] on uniform k-wise independence over the binary field to non-uniform k-wise independence over product spaces. Our results yield natural testing algorithms for k-wise independence with time and sample complexity sublinear in terms of the support size when k is a constant. The main technical tools employed include discrete Fourier transforms and the theory of linear systems of congruences.National Science Foundation (U.S.) (NSF grant 0514771)National Science Foundation (U.S.) (grant 0728645)National Science Foundation (U.S.) (Grant 0732334)Marie Curie International Reintegration Grants (Grant PIRG03-GA-2008-231077)Israel Science Foundation (Grant 1147/09)Israel Science Foundation (Grant 1675/09)Massachusetts Institute of Technology (Akamai Presidential Fellowship
- …