3,044 research outputs found

    Approximating the Noise Sensitivity of a Monotone Boolean Function

    Get PDF
    The noise sensitivity of a Boolean function f: {0,1}^n - > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O\u27Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/- epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm\u27s query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias

    Sampling Correctors

    Full text link
    In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make "on-the-fly" corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and property testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity without this stronger type of access, provided that the distribution be originally very close to monotone (namely, at a distance O(1/log2n)O(1/\log^2 n)). In addition to that, we consider a restricted error model that aims at capturing "missing data" corruptions. In this model, we show that distributions that are close to monotone have sampling correctors that are significantly more efficient than achievable by the learning approach. We also consider the question of whether an additional source of independent random bits is required by sampling correctors to implement the correction process

    Remedies for Price Overcharges: The Deadweight Loss of Coupons and Discounts

    Get PDF
    This article evaluates two different remedies for consumers who have been injured by a price overcharge on the sale of a good. Under a coupon remedy, injured consumers are awarded coupons that can be used for a limited period of time to purchase the good at a price below that which prevails after the overcharge has been eliminated, that is, below the competitive price. Under a discount remedy, any consumer, without proof of injury, may purchase the good for a limited period of time at a price that is set below the competitive price. Both remedies generally cause consumers to buy an excessive amount of the good during the remedy period. Under the coupon remedy only a subset of consumers are affected in this way (those holding a relatively high number of coupons), while under the discount remedy all consumers are affected. We show nonetheless that the resulting deadweight loss could be lower under the discount remedy. We also consider how the deadweight loss changes when the length of the remedy period is increased by extending the expiration date for the use of coupons or by employing a lower discount for a longer period of time. The deadweight loss may or may not decline under the coupon remedy, though it does decline under the discount remedy. In neither case, however, does it go to zero in the limit.

    Fiscal Federalism in Europe: Lessons From the United States Experience

    Get PDF
    The existing political and legal institutions of fiscal policy-making are under challenge. As the United States and the eastern European and Soviet states experiment with policy decentralization, the states of western Europe are looking to a more centralized policy structure via the E.E.C.. This paper seeks to raise issues of importance to all such reform efforts--notably, the need to consider, and balance, the inefficiencies of fiscal policy decentralization (spillovers and wasteful fiscal competition) against the inefficiencies of fiscal policy centralization (policy cycles and localized 'pork barrel' spending and taxes). The need to develop new fiscal policy institutions emphasizing voluntary agreements and responsive 'agenda-setters' is stressed.

    Local Access to Huge Random Objects Through Partial Sampling

    Get PDF
    © Amartya Shankha Biswas, Ronitt Rubinfeld, and Anak Yodpinyanee. Consider an algorithm performing a computation on a huge random object (for example a random graph or a “long” random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally “on-the-fly” (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n, p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries in the (sparse and directed) Kleinberg’s Small-World model. Our implementations require no pre-processing time, and answer each query using O(poly(log n)) time, random bits, and additional space. Next, we show how to implement random Catalan objects, specifically focusing on Dyck paths (balanced random walks on the integer line that are always non-negative). Here, we support Height queries to find the location of the walk, and First-Return queries to find the time when the walk returns to a specified location. This in turn can be used to implement Next-Neighbor queries on random rooted ordered trees, and Matching-Bracket queries on random well bracketed expressions (the Dyck language). Finally, we introduce two features to define a new model that: (1) allows multiple independent (and even simultaneous) instantiations of the same implementation, to be consistent with each other without the need for communication, (2) allows us to generate a richer class of random objects that do not have a succinct description. Specifically, we study uniformly random valid q-colorings of an input graph G with maximum degree ∆. This is in contrast to prior work in the area, where the relevant random objects are defined as a distribution with O(1) parameters (for example, n and p in the G(n, p) model). The distribution over valid colorings is instead specified via a “huge” input (the underlying graph G), that is far too large to be read by a sub-linear time algorithm. Instead, our implementation accesses G through local neighborhood probes, and is able to answer queries to the color of any given vertex in sub-linear time for q ≥ 9∆, in a manner that is consistent with a specific random valid coloring of G. Furthermore, the implementation is memory-less, and can maintain consistency with non-communicating copies of itself

    A Damage-Revelation Rationale for Coupon Remedies

    Get PDF
    This article studies optimal remedies in a setting in which damages vary among plaintiffs and are difficult to determine. We show that giving plaintiffs a choice between cash and coupons to purchase units of the defendant's product at a discount -- a "coupon-cash remedy" -- is superior to cash alone. The optimal coupon-cash remedy offers a cash amount that is less than the value of the coupons to plaintiffs who suffer relatively high harm. Such a remedy induces these plaintiffs to choose coupons, and plaintiffs who suffer relatively low harm to choose cash. Sorting plaintiffs in this way leads to better deterrence because the costs borne by defendants (the cash payments and the cost of providing coupons) more closely approximate the harms that they have caused.

    A simple online competitive adaptation of Lempel-Ziv compression with efficient random access support

    Get PDF
    We present a simple adaptation of the Lempel Ziv 78' (LZ78) compression scheme ({\em IEEE Transactions on Information Theory, 1978}) that supports efficient random access to the input string. Namely, given query access to the compressed string, it is possible to efficiently recover any symbol of the input string. The compression algorithm is given as input a parameter \eps >0, and with very high probability increases the length of the compressed string by at most a factor of (1+\eps). The access time is O(\log n + 1/\eps^2) in expectation, and O(\log n/\eps^2) with high probability. The scheme relies on sparse transitive-closure spanners. Any (consecutive) substring of the input string can be retrieved at an additional additive cost in the running time of the length of the substring. We also formally establish the necessity of modifying LZ78 so as to allow efficient random access. Specifically, we construct a family of strings for which Ω(n/logn)\Omega(n/\log n) queries to the LZ78-compressed string are required in order to recover a single symbol in the input string. The main benefit of the proposed scheme is that it preserves the online nature and simplicity of LZ78, and that for {\em every} input string, the length of the compressed string is only a small factor larger than that obtained by running LZ78
    corecore