17,812 research outputs found

    Veitch diagram plotter simplifies Boolean functions

    Get PDF
    This device for simplifying the plotting of a Veitch diagram consists of several overlays for blocking out the unwanted squares. This method of plotting the various input combinations to a computer is used in conjunction with the Boolean functions

    Stationary Points of Scalar Fields Coupled to Gravity

    Get PDF
    We investigate the dynamics of gravity coupled to a scalar field using a non-canonical form of the kinetic term. It is shown that its singular point represents an attractor for classical solutions and the stationary value of the field may occur distant from the minimum of the potential. In this paper properties of universes with such stationary states are considered. We reveal that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with corrected author lis

    Open Questions in Classical Gravity

    Full text link
    We discuss some outstanding open questions regarding the validity and uniqueness of the standard second order Newton-Einstein classical gravitational theory. On the observational side we discuss the degree to which the realm of validity of Newton's Law of Gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side we identify some commonly accepted but actually still open to question assumptions which go into the formulating of the standard second order Einstein theory in the first place. In particular, we show that while the familiar second order Poisson gravitational equation (and accordingly its second order covariant Einstein generalization) may be sufficient to yield Newton's Law of Gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. We show that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved non-luminous or dark matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send requests to [email protected]). To appear in a special issue of Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing Company, N.Y., Fall 199

    Self-stabilization of extra dimensions

    Full text link
    We show that the problem of stabilization of extra dimensions in Kaluza-Klein type cosmology may be solved in a theory of gravity involving high-order curvature invariants. The method suggested (employing a slow-change approximation) can work with rather a general form of the gravitational action. As examples, we consider pure gravity with Lagrangians quadratic and cubic in the scalar curvature and some more complex ones in a simple Kaluza-Klein framework. After a transition to the 4D Einstein conformal frame, this results in effective scalar field theories with certain effective potentials, which in many cases possess positive minima providing stable small-size extra dimensions. Estimates made in the original (Jordan) conformal frame show that the problem of a small value of the cosmological constant in the present Universe is softened in this framework but is not solved completely.}Comment: 10 pages, 4 figures, revtex4. Version with additions and corrections, accepted at Phys. Rev.

    Multidimensional world, inflation and modern acceleration

    Full text link
    Starting from pure multidimensional gravity with curvature-nonlinear terms but no matter fields in the initial action, we obtain a cosmological model with two effective scalar fields related to the size of two extra factor spaces. The model includes both an early inflationary stage and that of modern accelerated expansion and satisfies the observational data. There are no small parameters; the effective inflaton mass depends on the initial conditions which explain its small value as compared to the Planck mass. At the modern stage, the size of extra dimensions slowly increases, therefore this model predicts drastic changes in the physical laws of our Universe in the remote future.Comment: 7 two-column revtex pages, 2 figure

    Spatial Degrees of Freedom in Everett Quantum Mechanics

    Full text link
    Stapp claims that, when spatial degrees of freedom are taken into account, Everett quantum mechanics is ambiguous due to a "core basis problem." To examine an aspect of this claim I generalize the ideal measurement model to include translational degrees of freedom for both the measured system and the measuring apparatus. Analysis of this generalized model using the Everett interpretation in the Heisenberg picture shows that it makes unambiguous predictions for the possible results of measurements and their respective probabilities. The presence of translational degrees of freedom for the measuring apparatus affects the probabilities of measurement outcomes in the same way that a mixed state for the measured system would. Examination of a measurement scenario involving several observers illustrates the consistency of the model with perceived spatial localization of the measuring apparatus.Comment: 34 pp., no figs. Introduction, discussion revised. Material tangential to main point remove

    Differentially Private Model Selection with Penalized and Constrained Likelihood

    Full text link
    In statistical disclosure control, the goal of data analysis is twofold: The released information must provide accurate and useful statistics about the underlying population of interest, while minimizing the potential for an individual record to be identified. In recent years, the notion of differential privacy has received much attention in theoretical computer science, machine learning, and statistics. It provides a rigorous and strong notion of protection for individuals' sensitive information. A fundamental question is how to incorporate differential privacy into traditional statistical inference procedures. In this paper we study model selection in multivariate linear regression under the constraint of differential privacy. We show that model selection procedures based on penalized least squares or likelihood can be made differentially private by a combination of regularization and randomization, and propose two algorithms to do so. We show that our private procedures are consistent under essentially the same conditions as the corresponding non-private procedures. We also find that under differential privacy, the procedure becomes more sensitive to the tuning parameters. We illustrate and evaluate our method using simulation studies and two real data examples
    • …
    corecore