10,319 research outputs found

    Polar orbit electrostatic charging of objects in shuttle wake

    Get PDF
    A survey of DMSP data has uncovered several cases where precipitating auroral electron fluxes are both sufficiently intense and energetic to charge spacecraft materials such as teflon to very large potentials in the absence of ambient ion currents. Analytical bounds are provided which show that these measured environments can cause surface potentials in excess of several hundred volts to develop on objects in the orbiter wake for particular vehicle orientations

    Three-dimensional calculation of shuttle charging in polar orbit

    Get PDF
    The charged particles environment in polar orbit can be of sufficient intensity to cause spacecraft charging. In order to gain a quantitative understanding of such effects, the Air Force is developing POLAR, a computer code which simulates in three dimensions the electrical interaction of large space vehicles with the polar ionospheric plasma. It models the physical processes of wake generation, ambient ion collection, precipitating auroral electron fluxes, and surface interactions, including secondary electron generation and backscattering, which lead to vehicle charging. These processes may be followed dynamically on a subsecond timescale so that the rapid passage through intense auroral arcs can be simulated. POLAR models the ambient plasma as isotropic Maxwellian electrons and ions (0+, H+), and allows for simultaneous precipitation of power-law, energetic Maxwellian, and accelerated Gaussian distributions of electrons. Magnetic field effects will be modeled in POLAR but are currently ignored

    Domain Bubbles of Extra Dimensions

    Get PDF
    ``Dimension bubbles'' of the type previously studied by Blau and Guendelman [S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively enclose a region of 5d spacetime and are surrounded by a region of 4d spacetime, can arise in a 5d theory with a compact extra dimension that is dimensionally reduced to give an effective 4d theory. These bubbles with thin domain walls can be stabilized against total collapse in a rather natural way by a scalar field which, as in the case with ``ordinary'' nontopological solitons, traps light scalar particles inside the bubble.Comment: 13 pages, no figures; to appear in Phys.Rev.

    Mechanism for the Suppression of Intermediate-Mass Black Holes

    Full text link
    A model for the formation of supermassive primordial black holes in galactic nuclei with the simultaneous suppression of the formation of intermediate-mass black holes is presented. A bimodal mass function for black holes formed through phase transitions in a model with a "Mexican hat" potential has been found. The classical motion of the phase of a complex scalar field during inflation has been taken into account. Possible observational manifestations of primordial black holes in galaxies and constraints on their number are discussed.Comment: 12 pages, 2 figure

    Pandemic pains to Instagram gains! COVID-19 perceptions effects on behaviours towards fashion brands on Instagram in Sub-Saharan Africa: Tech-native vs non-native generations

    Get PDF
    This study represents a novel attempt to investigate the cascading effects of COVID-19 perceptions onto behavioural patterns towards fashion brands on Instagram and across two generations tech-native vs tech non-native) in a Sub-Saharan African context. We drew our study on a sample of 338 Instagram users that experienced fashion brands on Instagram in two Sub-Saharan African countries: Uganda and Nigeria. We used partial least square structural equation modelling (PLS-SEM) to test the hypothetical model. We found that COVID-19 perception positively predicted enjoyment and usefulness, leading to more satisfaction with fashion brand accounts on Instagram and hence greater intention to follow and recommend those accounts. Finally, running a multigroup analysis (MGA), we found the effects of COVID-19 perceptions pronounced into both intentions to follow and intention to recommend via the sequence of mediators: enjoyment and satisfaction were only valid amongst the tech-native generational cohort. Our research suggested a new generational categorisation based on technology nativity – offering a new direction of generational studies in digital marketing communications

    Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence

    Full text link
    Size-selective concentration of particles in a weakly turbulent protoplanetary nebula may be responsible for the initial collection of chondrules and other constituents into primitive body precursors. This paper presents the main elements of this process of turbulent concentration. In the terrestrial planet region, both the characteristic size and size distribution of chondrules are explained. "Fluffier" particles would be concentrated in nebula regions which were at a lower gas density and/or more intensely turbulent. The spatial distribution of concentrated particle density obeys multifractal scaling}, suggesting a close tie to the turbulent cascade process. This scaling behavior allows predictions of the probability distributions for concentration in the protoplanetary nebula to be made. Large concentration factors (>10^5) are readily obtained, implying that numerous zones of particle density significantly exceeding the gas density could exist. If most of the available solids were actually in chondrule sized particles, the ensuing particle mass density would become so large that the feedback effects on gas turbulence due to mass loading could no longer be neglected. This paper describes the process, presenting its basic elements and some implications, without including the effects of mass loading.Comment: 34 pages, 7 figures; in press for Astrophys. J; expected Jan 01 2001 issu

    An alternative approach to the galactic dark matter problem

    Get PDF
    We discuss scenarios in which the galactic dark matter in spiral galaxies is described by a long range coherent field which settles in a stationary configuration that might account for the features of the galactic rotation curves. The simplest possibility is to consider scalar fields, so we discuss in particular, two mechanisms that would account for the settlement of the scalar field in a non-trivial configuration in the absence of a direct coupling of the field with ordinary matter: topological defects, and spontaneous scalarization.Comment: 36 pages, 12 figures, Revtex, a brief discussion added, accepted for publication in PR

    Quantum Diffeomorphisms and Conformal Symmetry

    Get PDF
    We analyze the constraints of general coordinate invariance for quantum theories possessing conformal symmetry in four dimensions. The character of these constraints simplifies enormously on the Einstein universe R×S3R \times S^3. The SO(4,2)SO(4,2) global conformal symmetry algebra of this space determines uniquely a finite shift in the Hamiltonian constraint from its classical value. In other words, the global Wheeler-De Witt equation is {\it modified} at the quantum level in a well-defined way in this case. We argue that the higher moments of T00T^{00} should not be imposed on the physical states {\it a priori} either, but only the weaker condition ⟨T˙00⟩=0\langle \dot T^{00} \rangle = 0. We present an explicit example of the quantization and diffeomorphism constraints on R×S3R \times S^3 for a free conformal scalar field.Comment: PlainTeX File, 37 page

    On the Origin of Gauge Symmetries and Fundamental Constants

    Full text link
    A statistical mechanism is proposed for symmetrization of an extra space. The conditions and rate of attainment of a symmetric configuration and, as a consequence, the appearance of gauge invariance in low-energy physics is discussed. It is shown that, under some conditions, this situation occurs only after completion of the inflationary stage. The dependence of the constants â„Ź\hbar and G on the geometry of the extra space and the initial parameters of the Lagrangian of the gravitational field with higher derivatives are analyzed.Comment: 9 pages, minor correction

    Separate Universes Do Not Constrain Primordial Black Hole Formation

    Full text link
    Carr and Hawking showed that the proper size of a spherical overdense region surrounded by a flat FRW universe cannot be arbitrarily large as otherwise the region would close up on itself and become a separate universe. From this result they derived a condition connecting size and density of the overdense region ensuring that it is part of our universe. Carr used this condition to obtain an upper bound for the density fluctuation amplitude with the property that for smaller amplitudes the formation of a primordial black hole is possible, while larger ones indicate a separate universe. In contrast, we find that the appearance of a maximum is not a consequence of avoiding separate universes but arises naturally from the geometry of the chosen slicing. Using instead of density a volume fluctuation variable reveals that a fluctuation is a separate universe iff this variable diverges on superhorizon scales. Hence Carr's and Hawking's condition does not pose a physical constraint on density fluctuations. The dynamics of primordial black hole formation with an initial curvature fluctuation amplitude larger than the one corresponding to the maximum density fluctuation amplitude was previously not considered in detail and so we compare it to the well-known case where the amplitude is smaller by presenting embedding and conformal diagrams of both types in dust spacetimes.Comment: Updated version corresponds to the published version 10.1103/PhysRevD.83.124025, 22 pages, 22 figure
    • …
    corecore