20,159 research outputs found
A process-oriented language for describing aspects of reading comprehension
Includes bibliographical references (p. 36-38)The research described herein was supported in part by the National Institute of Education under Contract No. MS-NIE-C-400-76-011
Stationary Points of Scalar Fields Coupled to Gravity
We investigate the dynamics of gravity coupled to a scalar field using a
non-canonical form of the kinetic term. It is shown that its singular point
represents an attractor for classical solutions and the stationary value of the
field may occur distant from the minimum of the potential. In this paper
properties of universes with such stationary states are considered. We reveal
that such state can be responsible for modern dark energy density.Comment: H. Kroger, invited talk, FFP6, Udine (2004), revised version with
corrected author lis
Open Questions in Classical Gravity
We discuss some outstanding open questions regarding the validity and
uniqueness of the standard second order Newton-Einstein classical gravitational
theory. On the observational side we discuss the degree to which the realm of
validity of Newton's Law of Gravity can actually be extended to distances much
larger than the solar system distance scales on which the law was originally
established. On the theoretical side we identify some commonly accepted but
actually still open to question assumptions which go into the formulating of
the standard second order Einstein theory in the first place. In particular, we
show that while the familiar second order Poisson gravitational equation (and
accordingly its second order covariant Einstein generalization) may be
sufficient to yield Newton's Law of Gravity they are not in fact necessary. The
standard theory thus still awaits the identification of some principle which
would then make it necessary too. We show that current observational
information does not exclusively mandate the standard theory, and that the
conformal invariant fourth order theory of gravity considered recently by
Mannheim and Kazanas is also able to meet the constraints of data, and in fact
to do so without the need for any so far unobserved non-luminous or dark
matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send
requests to [email protected]). To appear in a special issue of
Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of
his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing
Company, N.Y., Fall 199
Visualization of hydrogen injection in a scramjet engine by simultaneous PLIF imaging and laser holographic imaging
Flowfield characterization has been accomplished for several fuel injector configurations using simultaneous planar laser induced fluorescence (PLIF) and laser holographic imaging (LHI). The experiments were carried out in the GASL-NASA HYPULSE real gas expansion tube facility, a pulsed facility with steady test times of about 350 microsec. The tests were done at simulated Mach numbers 13.5 and 17. The focus of this paper is on the measurement technologies used and their application in a research facility. The HYPULSE facility, the models used for the experiments, and the setup for the LHI and PLIF measurements are described. Measurement challenges and solutions are discussed. Results are presented for experiments with several fuel injector configurations and several equivalence ratios
Quantum Nonlocality: Not Eliminated by the Heisenberg Picture
It is argued that the Heisenberg picture of standard quantum mechanics does
not save Einstein locality as claimed in Deutsch and Hayden (2000). In
particular, the EPR-type correlations that DH obtain by comparing two qubits in
a local manner are shown to exist before that comparison. In view of this
result, the local comparison argument would appear to ineffective in supporting
their locality claim.Comment: Final version; to appear in Foundations of Physic
Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States
The presence of loss limits the precision of an approach to phase measurement
using maximally entangled states, also referred to as NOON states. A
calculation using a simple beam-splitter model of loss shows that, for all
nonzero values L of the loss, phase measurement precision degrades with
increasing number N of entangled photons for N sufficiently large. For L above
a critical value of approximately 0.785, phase measurement precision degrades
with increasing N for all values of N. For L near zero, phase measurement
precision improves with increasing N down to a limiting precision of
approximately 1.018 L radians, attained at N approximately equal to 2.218/L,
and degrades as N increases beyond this value. Phase measurement precision with
multiple measurements and a fixed total number of photons N_T is also examined.
For L above a critical value of approximately 0.586, the ratio of phase
measurement precision attainable with NOON states to that attainable by
conventional methods using unentangled coherent states degrades with increasing
N, the number of entangled photons employed in a single measurement, for all
values of N. For L near zero this ratio is optimized by using approximately
N=1.279/L entangled photons in each measurement, yielding a precision of
approximately 1.340 sqrt(L/N_T) radians.Comment: Additional references include
- …