29 research outputs found

    Theoretical Analysis of Pre-Receptor Image Conditioning in Weakly Electric Fish

    Get PDF
    Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through the skin. The distribution of local transepidermal voltage or current density on the sensory surface of the fish's skin is the electric image of the surrounding environment. This article reports a model study of the quantitative effect of the conductance of the internal tissues and the skin on electric image generation in Gnathonemus petersii (Günther 1862). Using realistic modelling, we calculated the electric image of a metal object on a simulated fish having different combinations of internal tissues and skin conductances. An object perturbs an electric field as if it were a distribution of electric sources. The equivalent distribution of electric sources is referred to as an object's imprimence. The high conductivity of the fish body lowers the load resistance of a given object's imprimence, increasing the electric image. It also funnels the current generated by the electric organ in such a way that the field and the imprimence of objects in the vicinity of the rostral electric fovea are enhanced. Regarding skin conductance, our results show that the actual value is in the optimal range for transcutaneous voltage modulation by nearby objects. This result suggests that “voltage” is the answer to the long-standing question as to whether current or voltage is the effective stimulus for electroreceptors. Our analysis shows that the fish body should be conceived as an object that interacts with nearby objects, conditioning the electric image. The concept of imprimence can be extended to other sensory systems, facilitating the identification of features common to different perceptual systems

    Fish Geometry and Electric Organ Discharge Determine Functional Organization of the Electrosensory Epithelium

    Get PDF
    Active electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially. As a consequence shape and amplitude of both, the electric field generated and the image of objects, change during the electric pulse. To study how G. omarorum constructs a perceptual representation, we developed a computational model that allows the determination of the self-generated field and the electric image. We verify and use the model as a tool to explore image formation in diverse experimental circumstances. We show how the electric images of objects change in shape as a function of time and position, relative to the fish's body. We propose a theoretical framework about the organization of the different perceptive tasks made by electroreception: 1) At the head region, where the electrosensory mosaic presents an electric fovea, the field polarizing nearby objects is coherent and collimated. This favors the high resolution sampling of images of small objects and perception of electric color. Besides, the high sensitivity of the fovea allows the detection and tracking of large faraway objects in rostral regions. 2) In the trunk and tail region a multiplicity of sources illuminate different regions of the object, allowing the characterization of the shape and position of a large object. In this region, electroreceptors are of a unique type and capacitive detection should be based in the pattern of the afferents response. 3) Far from the fish, active electroreception is not possible but the collimated field is suitable to be used for electrocommunication and detection of large objects at the sides and caudally

    Passive and active electroreception during agonistic encounters in the weakly electric fishGymnotus omarorum

    No full text
    Pedraja F, Perrone R, Silva A, Budelli R. Passive and active electroreception during agonistic encounters in the weakly electric fishGymnotus omarorum. Bioinspiration & Biomimetics. 2016;11(6): 65002
    corecore