25 research outputs found

    Spin scattering effect on thermal transport and nonadiabatic small polaron hopping conduction in layered cobaltite thin film

    No full text
    China-MOST [2008DFA51230]; National Key Basic Science Research Program (973 Project) [2007CB936603]; NSFC [11074207, 60776007]; Xiamen University [X12111]Transport properties in the a-b plane of Nd(0.75)Sr(1.25)CoO(4) thin film as fabricated via a pulsed laser deposition technique have been investigated by means of measurements of resistivity and thermopower, respectively, in the temperature ranges of 76-300 and 80-310 K. The thermopower of the specimen revealed a mechanism of spin-dependent scattering of the charge carriers where its conduction could be well interpreted by the small polaron hopping conduction in the nonadiabatic regime at high temperatures and the two-dimensional variable range hopping of small polarons at low temperatures. Possible mechanisms for the polaronic conduction were also discussed in the article where several physical parameters of the specimen were determined using a small polaron hopping model and a better understanding of the strongly correlated electron system was achieved

    Nanocrystalline-grained Bi-Sr-Ca-Cu-O and its superconducting property

    No full text

    Improvement of the phase formation and superconductivity of the (Bi,Pb)2Sr2Ca2Cu3Ox silver sheathed tapes with B2O3 addition

    No full text
    In (Bi,Pb)2Sr2Ca2Cu3Ox silver-sheathed (Bi2223/Ag) tapes, melted liquid phase plays an important role to form the Bi2223 phase. We have added a small amount of B2O3 into Bi2223/Ag tapes to assist in inducing melted phase because B2O3 has a melting point (460°C) much lower than the general sintering temperature of the tapes, and studied the influence of B2O3 doping on the microstructure and critical current density (Jc) of Bi2223/Ag tapes. The results show that B2O3 doping is really effective to result in the faster growth and better alignment of the Bi2223 grains in the superconducting core and improve the magnetic field dependence of the Jc value

    Acid-Assisted Exfoliation toward Metallic Sub-nanopore TaS<sub>2</sub> Monolayer with High Volumetric Capacitance

    No full text
    Conductive porous structures are favorable as active electrode materials for energy storage by boosting the active sites and specific surface area but have been rarely achieved in transition metal dichalcogenides. Here, we developed acid-assisted exfoliation for the first time, to successfully exfoliate TaS<sub>2</sub> into very large-sized conductive monolayers with controllable in-plane sub-nanopores. By inducing both interlayer lattice expansion and basal in-plane etching, hydrogen ion, previously regarded disastrous in charged system, was creatively utilized as an efficient and easily accessible assistant in simultaneous exfoliation and controllable structural modification. Benefiting from pore size (∼0.95 nm) matching well with electrolyte ion size, coexistence of ultrahigh conductivity and fast ion transport was achieved in metallic large-sized monolayers. Notably, the as-produced TaS<sub>2</sub>-based electrode delivers large volumetric capacitance (508 F/cm<sup>3</sup> at scan rate of 10 mV/s) and high energy density (58.5 Wh/L) when fabricated into a micro-supercapacitor. We anticipate acid-assisted exfoliation to be a promising strategy in constructing 2D nanomaterials with novel structure for wide energy applications

    Genome-wide association study suggested the PTPRD polymorphisms were associated with weight gain effects of atypical antipsychotic medications

    No full text
    Background: Antipsychotic-induced weight gain (AIWG) is a serious concern in therapy with antipsychotic medications. To identify single nucleotide polymorphisms (SNPs) associated with AIWG, we conducted a genome-wide association study (GWAS) for antipsychotic treatment. Methods: The discovery cohort consisted of 534 patients with schizophrenia, who underwent 8-week treatment with antipsychotics and were genotyped using the Illumina Human 610-Quad BeadChip. The independent replication cohort consisted of 547 patients with schizophrenia, treated with similar antipsychotics, and genotyped using the Sequenom MassARRAY platform. Two hundred and thirty-six drug-naive patients treated with risperidone or quetiapine were analyzed independently. Additionally, we conducted pathway and expression analyses using several public bioinformatics databases. Results: After correction for age and gender, the top 2 genome-wide significant SNPs with AIWG were located in the PTPRD gene (protein tyrosine phosphatase, receptor type D, 9p24-p23; rs10977144, P = 9.26E-09; rs10977154, P = 4.53E-08). The third most significant SNP was in the GFPT2 gene (glutamine-fructose-6-phosphate amidotransferase 2, 5q35.3; rs12386481, P = 1.98E-07). These results were validated in the replication cohort (rs10977144, P = 4.30E-03; rs10977154, P = 6.33E-03; rs12386481, P =7.65E-03). These results were also verified in those patients initially exposed to risperidone and quetiapine (rs10977144, P = 1.97E-05; rs10977154, P = 2.04E-05; rs12386481, P = 1.97E-04). Pathway analyses showed that AIWG may involve in multiple pathways related to metabolic processes. Moreover, PTPRD mRNA might be highly expressed in brain regions, and the SNPs (rs10977144, rs1097154) also showed significant expression quantitative trait locus effects. Conclusions: Our findings indicate that PTPRD polymorphisms might modulate AIWG
    corecore