309 research outputs found

    Efficient Robust Adaptive Beamforming Algorithms for Sensor Arrays

    Get PDF
    Sensor array processing techniques have been an important research area in recent years. By using a sensor array of a certain configuration, we can improve the parameter estimation accuracy from the observation data in the presence of interference and noise. In this thesis, we focus on sensor array processing techniques that use antenna arrays for beamforming, which is the key task in wireless communications, radar and sonar systems. Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Thirdly, we propose distributed beamforming techniques that are based on wireless relay systems. Algorithms that combine relay selections and SINR maximization or Minimum Mean-Square- Error (MMSE) consensus are developed, assuming the relay systems are under total relay transmit power constraint. Lastly, we look into the research area of robust distributed beamforming (RDB) and develop a novel RDB approach based on the exploitation of the cross-correlation between the received data at the relays and the destination and a subspace projection method to estimate the channel errors, namely, the cross-correlation and subspace projection (CCSP) RDB technique, which efficiently maximizes the output SINR and minimizes the channel errors. Simulation results show that the proposed techniques outperform existing techniques in various performance metrics

    Distributional Modeling for Location-Aware Adversarial Patches

    Full text link
    Adversarial patch is one of the important forms of performing adversarial attacks in the physical world. To improve the naturalness and aggressiveness of existing adversarial patches, location-aware patches are proposed, where the patch's location on the target object is integrated into the optimization process to perform attacks. Although it is effective, efficiently finding the optimal location for placing the patches is challenging, especially under the black-box attack settings. In this paper, we propose the Distribution-Optimized Adversarial Patch (DOPatch), a novel method that optimizes a multimodal distribution of adversarial locations instead of individual ones. DOPatch has several benefits: Firstly, we find that the locations' distributions across different models are pretty similar, and thus we can achieve efficient query-based attacks to unseen models using a distributional prior optimized on a surrogate model. Secondly, DOPatch can generate diverse adversarial samples by characterizing the distribution of adversarial locations. Thus we can improve the model's robustness to location-aware patches via carefully designed Distributional-Modeling Adversarial Training (DOP-DMAT). We evaluate DOPatch on various face recognition and image recognition tasks and demonstrate its superiority and efficiency over existing methods. We also conduct extensive ablation studies and analyses to validate the effectiveness of our method and provide insights into the distribution of adversarial locations

    Towards Viewpoint-Invariant Visual Recognition via Adversarial Training

    Full text link
    Visual recognition models are not invariant to viewpoint changes in the 3D world, as different viewing directions can dramatically affect the predictions given the same object. Although many efforts have been devoted to making neural networks invariant to 2D image translations and rotations, viewpoint invariance is rarely investigated. As most models process images in the perspective view, it is challenging to impose invariance to 3D viewpoint changes based only on 2D inputs. Motivated by the success of adversarial training in promoting model robustness, we propose Viewpoint-Invariant Adversarial Training (VIAT) to improve viewpoint robustness of common image classifiers. By regarding viewpoint transformation as an attack, VIAT is formulated as a minimax optimization problem, where the inner maximization characterizes diverse adversarial viewpoints by learning a Gaussian mixture distribution based on a new attack GMVFool, while the outer minimization trains a viewpoint-invariant classifier by minimizing the expected loss over the worst-case adversarial viewpoint distributions. To further improve the generalization performance, a distribution sharing strategy is introduced leveraging the transferability of adversarial viewpoints across objects. Experiments validate the effectiveness of VIAT in improving the viewpoint robustness of various image classifiers based on the diversity of adversarial viewpoints generated by GMVFool.Comment: Accepted by ICCV 202

    Improving Viewpoint Robustness for Visual Recognition via Adversarial Training

    Full text link
    Viewpoint invariance remains challenging for visual recognition in the 3D world, as altering the viewing directions can significantly impact predictions for the same object. While substantial efforts have been dedicated to making neural networks invariant to 2D image translations and rotations, viewpoint invariance is rarely investigated. Motivated by the success of adversarial training in enhancing model robustness, we propose Viewpoint-Invariant Adversarial Training (VIAT) to improve the viewpoint robustness of image classifiers. Regarding viewpoint transformation as an attack, we formulate VIAT as a minimax optimization problem, where the inner maximization characterizes diverse adversarial viewpoints by learning a Gaussian mixture distribution based on the proposed attack method GMVFool. The outer minimization obtains a viewpoint-invariant classifier by minimizing the expected loss over the worst-case viewpoint distributions that can share the same one for different objects within the same category. Based on GMVFool, we contribute a large-scale dataset called ImageNet-V+ to benchmark viewpoint robustness. Experimental results show that VIAT significantly improves the viewpoint robustness of various image classifiers based on the diversity of adversarial viewpoints generated by GMVFool. Furthermore, we propose ViewRS, a certified viewpoint robustness method that provides a certified radius and accuracy to demonstrate the effectiveness of VIAT from the theoretical perspective.Comment: 14 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:2307.1023

    ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial Viewpoints

    Full text link
    Recent studies have demonstrated that visual recognition models lack robustness to distribution shift. However, current work mainly considers model robustness to 2D image transformations, leaving viewpoint changes in the 3D world less explored. In general, viewpoint changes are prevalent in various real-world applications (e.g., autonomous driving), making it imperative to evaluate viewpoint robustness. In this paper, we propose a novel method called ViewFool to find adversarial viewpoints that mislead visual recognition models. By encoding real-world objects as neural radiance fields (NeRF), ViewFool characterizes a distribution of diverse adversarial viewpoints under an entropic regularizer, which helps to handle the fluctuations of the real camera pose and mitigate the reality gap between the real objects and their neural representations. Experiments validate that the common image classifiers are extremely vulnerable to the generated adversarial viewpoints, which also exhibit high cross-model transferability. Based on ViewFool, we introduce ImageNet-V, a new out-of-distribution dataset for benchmarking viewpoint robustness of image classifiers. Evaluation results on 40 classifiers with diverse architectures, objective functions, and data augmentations reveal a significant drop in model performance when tested on ImageNet-V, which provides a possibility to leverage ViewFool as an effective data augmentation strategy to improve viewpoint robustness.Comment: NeurIPS 202
    • …
    corecore