660 research outputs found

    Fragmentation and OB Star Formation in High-Mass Molecular Hub-Filament System

    Full text link
    Filamentary structures are ubiquitously seen in the interstellar medium. The concentrated molecular mass in the filaments allows fragmentation to occur in a shorter timescale than the timescale of the global collapse. Such hierarchical fragmentation may further assist the dissipation of excessive angular momentum. It is crucial to resolve the morphology and the internal velocity structures of the molecular filaments observationally. We perform 0".5-2".5 angular resolution interferometric observations toward the nearly face-on OB cluster forming region G33.92+0.11. Observations of various spectral lines as well as the millimeter dust continuum emission, consistently trace several ∼\sim1 pc scale, clumpy molecular arms. Some of the molecular arms geometrically merge to an inner 3.0−1.4+2.8⋅103^{{\scriptsize{+2.8}}}_{{-\scriptsize{1.4}}}\cdot10^{3}\,M⊙M_{\odot}, 0.6 pc scale central molecular clump, and may directly channel the molecular gas to the warm (∼\sim50 K) molecular gas immediately surrounding the centrally embedded OB stars. The NH3_{3} spectra suggest a medium turbulence line width of FWHM≲\lesssim2\,km\,s−1^{-1} in the central molecular clump, implying a ≳\gtrsim10 times larger molecular mass than the virial mass. Feedbacks from shocks and the centrally embedded OB stars and localized (proto)stellar clusters, likely play a key role in the heating of molecular gas and could lead to the observed chemical stratification. Although (proto)stellar feedbacks are already present, G33.92+0.11 chemically appears to be at an early evolutionary stage given by the low abundance limit of SO2_{2} observed in this region.Comment: 37 pages, 23 figure

    Non-Hermitian guided modes and exceptional points using loss-free negative-index materials

    Full text link
    We analyze the guided modes in coupled waveguides made of negative-index materials without gain or loss. We show that it supports non-Hermitian phenomenon on the existence of guided mode versus geometric parameters of the structure. The non-Hermitian effect is different from parity-time (PT) symmetry, and can be explained by a simple coupled-mode theory with an anti-PT symmetry. The existence of exceptional points and slow-light effect are discussed. This work highlights the potential of loss-free negative-index materials in the study of non-Hermitian optics

    Higher-order exceptional points in loss-free waveguide arrays with negative-index materials

    Full text link
    Negative-index materials (NIMs) are shown to support optical anti-parity-time (anti-PT) symmetry even when they are lossless. Here we prove the feasibility in achieving higher-order exceptional points (EPs) in loss-free waveguide arrays by utilizing the anti-PT\mathcal{PT} symmetry induced by NIM. Numerical simulation about a third-order EP fits well with the coupled-mode theory. A scheme of achieving fourth-order EPs is also discussed. This work highlights the potential of loss-free NIMs in the study of non-Hermitian optics

    A new AgI complex based on 1-[(1H-benzimidazol-1-yl)meth­yl]-1H-1,2,4-triazole

    Get PDF
    In the title complex, bis­{μ-1-[(1H-benzimidazol-1-yl)meth­yl]-1H-1,2,4-triazole}disilver(I) dinitrate, [Ag2(C10H9N5)2](NO3)2, the AgI ion is nearly linearly coordinated [N—Ag—N angle is 155.72 (14)°] by two 1-[(1H-benzimidazole-1-yl)meth­yl]-1H-1,2,4-triazole (bmt) ligands. In addition, two bmt ligands link two AgI ions, forming a dinuclear unit with an Ag⋯Ag distance of 5.0179 (15) Å. The whole complex is generated by an inversion centre. The dinuclear units and the NO3 − counter-ions are connected by N—H⋯O hydrogen bonds and weak Ag⋯O inter­actions [2.831 (5), 2.887 (5) and 2.908 (5) Å], leading to a three-dimensional structure

    Light Harvesting Mechanism of Photosystem II in Photosynthesis:

    Get PDF
    As one of the most important chemical reactions on the earth, the photosynthetic reaction has gained much attention. For example, foliage and algae possess superior abilities to harvest luminous energy from sunlight in photosynthetic reactions by capturing lights with the light-harvesting complex (LHC) and transferring the energy from LHC to the reaction center (RC) in Photosystem II (PSII), to realize the continuous and efficient transformation from luminous energy to chemistry energy. In this article, the progresses in the studies on the crystal structure of PSII, the energy and electron transfer mechanism, and artificial simulation on photo-induced electron transfer are reviewed. Additionally, the initiating mechanism of hydrogen-abstraction photoinitiators, and the inspiration of the principles and mechanisms of photo-induced electron transfer in macromolecular photoinitiators were also discussed. It is believed that properly choosing covalent chains of appropriate types and length as the bridge between electron donor and electron acceptor is crucial for improving the initiating efficiency of photoinitiators. Keywords: photosynthesis; photosystem; light harvesting; photoinitiator; electron transfe

    1-[Bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl]-3-[bicyclo[4.2.0]octa-1(6),2,4-trien-3-yl­methyl]imidazolium hexa­fluoro­phos­phate

    Get PDF
    In the title compound, C20H19N2 +·PF6 −, the two benzocyclo­butene units are essentially planar and they form dihedral angles of 38.0 (2) and 72.7 (2)°, with the central imidazolium ring. In the crystal structure, weak C—H⋯π and π-–π stacking inter­actions [centroid–centroid distance = 3.742 (2) Å] contribute to the stability of the crystal structure. The PF6 − ion is disordered over two positions with site occupancies of 0.869 (9) and 0.131 (9)

    Optimization of fermentation conditions for pristinamycin production by immobilized Streptomyces pristinaespiralis using response surface methodology

    Get PDF
    Abstract Response surface methodology was used to optimize the fermentation conditions for the production of pristinamycin by immobilization of Streptomyces pristinaespiralis F213 in shaking flask cultivation. Seed medium volume, fermentation medium volume and shaking speed of seed culture were found to have significant effects on pristinamycin production by the Plackett-Burman design. The steepest ascent method was adopted to approach the vicinity of optimum space, followed by central composite design for further optimization. A quadratic model was built to fit the pristinamycin production. The optimum conditions were found to be seed medium volume of 29.5 ml, fermentation medium volume of 28.8 ml, and shaking speed of seed culture at 204 rpm. At the optimum conditions, a production of 213 mg/l was obtained, which was in agreement with the maximum predicted pristinamycin yield of 209 mg/l. This is the first report on pristinamycins production by immobilized S. pristinaespiralis using response surface methodology

    High-quality multi-wavelength quantum light sources on silicon nitride micro-ring chip

    Full text link
    Multi-wavelength quantum light sources, especially at telecom band, are extremely desired in quantum information technology. Despite recent impressive advances, such a quantum light source with high quality remains challenging. Here we demonstrate a multi-wavelength quantum light source using a silicon nitride micro-ring with a free spectral range of 200 GHz. The generation of eight pairs of correlated photons is ensured in a wavelength range of 25.6 nm. With device optimization and noise-rejecting filters, our source enables the generation of heralded single-photons - at a rate of 62 kHz with gh(2)(0)=0.014±0.001g^{(2)}_{h}(0)=0.014\pm0.001, and the generation of energy-time entangled photons - with a visibility of 99.39±0.45%99.39\pm 0.45\% in the Franson interferometer. These results, at room temperature and telecom wavelength, in a CMOS compatible platform, represent an important step towards integrated quantum light devices for the quantum networks.Comment: 7 pages, 4 figure
    • …
    corecore