2,562 research outputs found

    Associated production of a neutral top-Higgs with a heavy-quark pair in the \gamma\gamma collisions at ILC

    Full text link
    We have studied the associated production processes of a neutral top-Higgs in the topcolor assisted technicolor model with a pair of heavy quarks in \gamma\gamma collisions at the International Linear Collider (ILC). We find that the cross section for t\bar{t}h_t in \gamma\gamma collisions is at the level of a few fb with the c.m. energy \sqrt{s}=1000 GeV, which is consistent with the results of the cross section of t\bar{t}H in the standard model and the cross section of t\bar{t}h in the minimal supersymmetric standard modeland the little Higgs models. It should be distinct that hundreds of to thousands of h_t per year can be produced at the ILC, this process of \gamma\gamma \to t\bar{t}h_t is really interesting in testing the standard model and searching the signs of technicolor.Comment: 4 pages, 4 figures, some references are adde

    Generating scalable entanglement of ultracold bosons in superlattices through resonant shaking

    Full text link
    Based on a one-dimensional double-well superlattice with a unit filling of ultracold atoms per site, we propose a scheme to generate scalable entangled states in the superlattice through resonant lattice shakings. Our scheme utilizes periodic lattice modulations to entangle two atoms in each unit cell with respect to their orbital degree of freedom, and the complete atomic system in the superlattice becomes a cluster of bipartite entangled atom pairs. To demonstrate this we perform ab initioab \ initio quantum dynamical simulations using the Multi-Layer Multi-Configuration Time-Dependent Hartree Method for Bosons, which accounts for all correlations among the atoms. The proposed clusters of bipartite entanglements manifest as an essential resource for various quantum applications, such as measurement based quantum computation. The lattice shaking scheme to generate this cluster possesses advantages such as a high scalability, fast processing speed, rich controllability on the target entangled states, and accessibility with current experimental techniques.Comment: 13 pages, 3 figure

    Multiscale Technicolor and the Zbb-bar Vertex

    Full text link
    We estimate the correction to the Zbb-bar vertex arising from the exchanges of the sideways extended technicolor (ETC) boson and the flavor-diagonal ETC boson in the multiscale walking technicolor model. The obtained result is too large to explain the present data. However, if we introduce a new self- interaction for the top quark to induce the top quark condensate serving as the origin of the large top quark mass, the corrected R_b=Gamma_b/Gamma_h can be consistent with the recent LEP data. The corresponding correction to R_c=Gamma_c/Gamma_h is shown to be negligibly small.Comment: 9-page LaTex fil

    Testing Technicolor Models via Top Quark Pair Production in High Energy Photon Collisions

    Get PDF
    Pseudo-Goldstone boson contributions to ttˉt\bar{t} production rates in technicolor models with and without topcolor at the s=0.5and1.5\sqrt{s}=0.5 and 1.5 TeV photon colliders and hadron colliders are reviewed. For reasonable ranges of the parameters, the contributions are large enough to be experimentally observable. Models with topcolor, without topcolor and the MSSM with tanβ1\tan\beta\geq 1 can be experimentally distinguished.Comment: Talk given by H.Y. Zhou at the III International Conference on Hyperons,Charm and Beauty Hadrons,Genova,Italy,June 30-July 3 199

    Light absorption properties of brown carbon over the southeastern Tibetan Plateau

    Get PDF
    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanolsoluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326 m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365 nm (b(abs365)) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365 nm compared to WS-BrC. The absorption at 550 nm appears lower compared to that of 365 nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Angstrom exponent (AAE, 365-550 nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365 nm (MAC(365)) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. (c) 2017 Elsevier B.V. All rights reserved
    corecore