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ABSTRACT

We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-
soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326 m above sea level) in the southeastern Tibetan
Plateau during the period 2015-2016. The light absorption coefficients at 365 nm (baps365) of WS-BrC and
MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5
times higher at 365 nm compared to WS-BrC. The absorption at 550 nm appears lower compared to that of
365 nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Angstrém exponent
(AAE, 365-550 nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption
cross section at 365 nm (MACsgs) indicated that BrC in winter absorbs UV-visible light more efficiently than in
monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region.
The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies
for the climate effects and transport of BrC in the Tibetan Plateau.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

of the solar spectrum (P6schl, 2003; Andreae and Gelencsér, 2006;
Moosmiiller et al., 2011). BrC may contribute substantially the total

Brown carbon (BrC) is a certain type of organic carbon (OC), which
absorbs radiation efficiently at the blue and ultraviolet (UV) wavelength
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aerosol absorption at specific wavelengths, thereby affecting the accu-
racy of climate model results and satellite data retrieval. The light ab-
sorption of BrC produced from different types of biofuels burning
under varied combustion conditions have been investigated
(Ramanathan et al., 2007a, 2007b; Alexander et al., 2008; Andreae and
Gelencsér, 2006). The previous studies showed that BrC (including
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primary and secondary BrC) is typically emitted during biomass burn-
ing, coal combustion, and the formation of secondary organic aerosol
(SOA) (e.g., Hecobian et al., 2010; Lack and Langridge, 2013; Zhang et
al., 2013; Laskin et al,, 2015).

The light absorption of BrC is estimated by either measuring the ab-
sorption of organics extracted in water, acetone, methanol, or by calcu-
lating the difference between total absorption and that of black carbon
(BC) (Chen and Bond, 2010; Laskin et al., 2015). At present, the transfor-
mations mechanisms and rates of BrC are not well characterized, and lit-
tle is known about the relationship among the chemical components
and its light absorption properties.

The Tibetan Plateau (TP), called as “the third pole” with the ex-
tremely high altitude, is an important and vulnerable region for the
changes of global climate and regional environment. The TP glaciers de-
termine the albedo of the area with snow cover, and provide the water
of some Asian rivers. These rivers are important water resources for bil-
lions of local habitants in surrounding areas (Yao et al,, 2012). The series
effects of carbonaceous aerosol (e.g., BC and BrC) are attracting atten-
tion recently, because of their considerable role in the melting of glaciers
and the albedo effects in the TP (e.g., Cao et al., 2009; Xu et al., 2009,
2012; Wang et al,, 2012; Cong et al., 2013; Zhu et al., 2017). Long-
range transport from upwind regions to the plateau is the major source
of pollutants (Cao et al., 2010; Zhu et al., 2017). The abundant BrC in
Indo-Gangetic Plain could enter the TP from the south side of the
Himalayas, and may exert profound impacts on the climate and regional
environment (Srinivas and Sarin, 2013, 2014; Zhao et al., 2013; Srinivas
et al., 2016). The investigations for the chemical composition and ab-
sorption properties of BrC in the TP are needed. Until now, very few
studies focused on the light-absorbing properties of water-soluble
brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-
BrC) were conducted in the TP.

In this work, an attempt has been made to investigate the light prop-
erties of WS-BrC and MeS-BrC in the southeastern TP. The relationships
between BrC light absorption and carbonaceous fractions are also inves-
tigated during the sampling period.

2. Materials and methods
2.1. Sampling

The field aerosol sampling campaign was conducted at Lulang
(94.73°E, 29.76°N, 3326 m a.s.l.) in southeastern region of the TP (Fig.
1). The map presents the seasonal aerosol optical depth, retrieved
from satellite (Terra/Modis) observations during the sampling period
(http://www.nasa.gov). The detailed description about the sampling
site has been reported elsewhere (Cao et al., 2010; Zhao et al., 2013).
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Total suspended particulate (TSP) samples (47 mm Whatman
quartz-fiber filters, with filter changing at 1000 local standard time)
were collected on a weekly basis at 17 L/min with a custom-built sam-
pler from November 2015 to November 2016. The field blank samples in
southeastern TP were also collected during the sampling period. These
quartz-fiber filters were pre-heated at 900 °C for 3 h to remove the re-
sidual carbon. The samples were stored in a refrigerator at about — 20 °C
to prevent the volatile components evaporation after sampling.

2.2. Measurement of carbonaceous fractions

All the filters (including field blank filters) were analyzed for carbon
fractions by using a DRI Model 2001 Thermal/Optical Carbon Analyzer
(Atmoslytic Inc., Calabasas, CA, USA). Carbon fractions were analyzed
following the IMPROVE-A (Interagency Monitoring of Protected Visual
Environments) thermal/optical reflectance (TOR) protocol (Chow et
al., 2007). The concentrations of organic carbon (OC) and elemental car-
bon (EC) were obtained. The detailed procedures for quality assurance
and quality control (QA/QC) have been reported elsewhere (Cao et al.,
2003; Chow et al., 2011).

A part of the TSP sample was cut into pieces, and then extracted with
Milli-Q water (30 mL) three times (60 min, 20 min for each cycle)
under sonication, and filtered by using the Polytetrafluoroethylene
(PTFE) filters. The combined water extracts were analyzed for water-
soluble organic carbon (WSOC), water-soluble inorganic carbon
(WSIC) and water-soluble total nitrogen (WSTN) by using the
Shimadzu TOC-L CPH Total Carbon/Nitrogen Analyzer (Wang et al.,
2010). Major water-soluble inorganic nitrogen (WSIN) species in atmo-
spheric aerosols are NO3™ and NH, thus the difference between WSTN
and WSIN is defined as water-soluble organic nitrogen (WSON) (Wang
et al., 2013). Temporal variability of WSOC and water-soluble organic
nitrogen (WSON) concentrations for TSP during the sampling period
was obtained.

2.3. Measurements of the light-absorbing properties of BrC

BrC was extracted from the filter subsamples by 1 h sonication in ul-
trapure Milli-Q water (>18.2 MQ) or from the filter subsamples by 1 h
sonication in methanol (]. T. Baker, HPLC Grade). The water and metha-
nol extracts were then filtered to remove these insoluble material using
0.22 um PES (polyether sulphone) and 0.45 um PTFE pore syringe filter,
respectively. Absorption spectra of the extracts (water or methanol)
were measured using a Liquid Waveguide Capillary Cell (LWCC-3100,
World Precision Instrument, Sarasota, FL, USA, 0.94 m in length)
equipped with a UV-Vis spectrophotometer (300-700 nm) (Hecobian
et al,, 2010; Laskin et al.,, 2015; Kirillova et al., 2016). The light

Fig. 1. Geographic location of the sampling site, Lulang (a). Time averaged maps of the seasonal AOD were produced with the Giovanni online data system, developed and maintained by

the NASA GES DISC (b).
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absorption data were then converted to the BrC absorption coefficient
following Eq. (1)

babs)\ = (A)\_A700)

VGVIX ;% In(10) (1)
where b,psy (Mm ™) represents the absorption coefficient of filter ex-
tracts at wavelength of A. A, (arbitrary unit) is the light absorbance re-
corded. V; (in mL) corresponds to the volume of solvent (water or
methanol) used to extract the filter sample, and V,, (in m?) is the volume
of the air sampled through the filter punch. The optical length (!) of
LWCC used here is 0.94 m and In(10) converts the log base-10 (re-
corded by UV-Vis spectrophotometer) to nature log to be consistent
with the typical atmospheric measurement results. To account for base-
line shift that may occur during analysis, absorption at all wavelengths
below 700 nm are referenced to that of 700 nm (no absorption for am-
bient aerosol extracts). The average absorption coefficient between 360
and 370 nm (baps3es) is used to represent BrC absorption in order to
avoid interferences from non-organic compounds (e.g., nitrate) and to
maintain consistence with previous reported results.

The light absorption wavelength (\) dependences for WS-BrC and
MeS-BrC were obtained using the absorption Angstrém exponent
(AAE) (Moosmiiller et al., 2011). In this study, the two-wavelength
AAE is defined as:

In <£365nm)
AAE = — 550nm/ _ __ In (p365nm)_ In (pSSOnm) (2)
n (@) In(365)— In(550)
550

where p3esnm and pssonm are absorption coefficients at the wavelengths
of 365 nm and 550 nm, respectively.

The mass absorption cross section (MAC) for water and methanol
extracts was computed at 365 nm using the following equation:

(Azgs—A700) x In(10)

MACs65 = Cowsjoc x I

()

where Ciws)oc is the concentration of WSOC in water solution or OC in
the methanol solution. We assumed that methanol extracts almost all
OC from the filter (Chen and Bond, 2010).

3. Results and discussion

3.1. Seasonal and weekly variations of TC, OC, WSOC, and WSON
concentrations

Fig. 2 showed the seasonal variations of total carbon (TC), OC, WSOC,
and WSON levels at the Lulang site. The weekly average TC and OC con-
centrations showed large variability during the study period. TC varied
over 2.8 folds from 1.6 to 4.6 ug m—>, and OC varies over 3.2 folds
from 1.1 to 3.5 ug m~>. The TC and OC exhibited similar seasonal
cycle, with the highest concentration observed during the monsoon
(3.3 4+ 0.7ugm 3 and 2.5 + 0.6 pg m~2 for TC and OC, respectively)
and the lowest value during the pre-monsoon (2.6 + 0.7 ug m~> and
1.9 + 0.6 ug m ™~ for TC and OC, respectively). The TC and OC concentra-
tions in the monsoon period were higher by about a factor of 1.3 com-
pared with their mean values during the pre-monsoon.

The weekly concentrations of WSOC ranged from 0.7 ug m—> to 2.8
ug m~3, with an average value of 1.3 pg m—>. The seasonal variations
of WSOC were relatively constant throughout the year at Lulang with
the levels for winter (1.41 + 0.36 ug m~3), pre-monsoon (1.39 + 0.48
ug m~3), post-monsoon (1.24 & 0.25 pg m~>), and monsoon (1.22 +
0.34 pg m~3), respectively.

As shown in Fig. 2, major peaks in the TC concentrations always co-
incided with high loadings of OC, and WSOC. This implies that the same
physical processes, including those during both production and
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Fig. 2. Temporal variability of total carbon (TC), organic carbon (OC), water-soluble
organic carbon (WSOC), and water-soluble organic nitrogen (WSON) for TSP during the
sampling period.

transport, caused these species' concentrations to covary. The seasonal-
ity of TC and OC we observed at Lulang is different from the variations
observed at other sites in Nepal and India; that is, lower loadings during
the monsoon season and higher concentrations in the winter and pre-
monsoon periods (Ganguly et al., 2006; Marinoni et al., 2010; Mouli et
al., 2006). High concentrations of TC and OC at Lulang may be attributed
to the bioaerosol and vehicle emissions due to the local extensive forests
and vehicular traffic (peak travel season) during monsoon (Shrestha et
al., 2000). The aerosol transport pathways driven by the southwestern
monsoon often pass over densely populated areas of the Indo-Gangetic
Plain, so the variations of carbonaceous species at Lulang can be partially
linked to the air flow (Marinoni et al., 2010). Comparable levels of
WSON were found in four seasons in the range of 0.06 g m™> (winter
and post-monsoon) to 0.08 ug m~> (pre-monsoon and monsoon)
(Table 1).

3.2. Light absorption by BrC in water and methanol extracts

3.2.1. Brown carbon light absorption coefficient

Fig. 3 showed the time trend of the brown carbon absorption coeffi-
cients for WS-BrC and MeS-BrC at Lulang from November 2015 to No-
vember 2016. The light absorption coefficient of WS-BrC at 365 nm
(babs3gs) correlated with the b,ps3es of MeS-BrC. The weekly average
values of b,ps3gs showed large variability during the study period.
Babs3ss varied over 6 folds from 0.25 to 1.57 Mm ™! for WS-BrC, and
over 5 folds from 0.45 to 2.45 Mm ™! for MeS-BrC.

The mean WS-BrC b,ys365 during winter, pre-monsoon, monsoon
and post-monsoon seasons were 1.04 + 025 Mm~!, 0.85 +
0.25 Mm~!,0.38 4 0.09 Mm~!, and 0.55 + 0.23 Mm ™!, respectively.
Compared to WS-BrC bgps3ss, higher MeS-BrC bapsses Were obtained
during winter, pre-monsoon, monsoon, and post-monsoon with the
values of 1.47 + 0.51 Mm~ !, 0.97 & 0.24 Mm~ !, 0.67 & 0.17 Mm ',
and 1.09 + 0.15 Mm™ !, respectively. The highest values of b,ps365
were observed during the winter season for both of WS-BrC and MeS-
BrC. The similar trends were observed for WS-BrC and MeS-BrC bapssso
with lower values compared to b,ps3gs.

The light absorption by MeS-BrC was on average 1.5 times higher at
365 nm than that by WS-BrC (Fig. 3 and Table 1). Assuming that OC is
almost fully extracted by methanol (92% of primary OC) (Chen and
Bond, 2010). The observed trend is in agreement with other studies,
since methanol extracts a greater range of compounds than water



C-S. Zhu et al. / Science of the Total Environment 625 (2018) 246-251

Table 1

249

Seasonal averages of the TC, OC, WSOC, and WSON concentrations, and the brown carbon absorption characteristics for the aerosols collected at Lulang. TSP samples were collected on a

weekly basis from November 2015 to November 2016.

Winter (n = 14)

Premonsoon (n = 15)

Monsoon (n = 16)

Postmonsoon (n = 8)

TC (ug m—3) 29+ 06 26+07 33+07 2.7+03
OC (ugm—3) 21+04 1.9+ 06 25+ 0.6 1.9+02
WSOC (ug m—3) 1.41 £ 036 1.39 + 048 122 +0.34 1.24 + 0.25
WSON (ug m—3) 0.06 + 0.07 0.08 + 0.08 0.08 + 0.06 0.06 + 0.02
baps3es water (Mm™1)? 1.04 + 0.25 0.85 + 0.25 0.38 + 0.09 0.55 + 0.23
baps3es methanol (Mm ™~ 1) 1.47 £ 0.51 0.97 + 0.24 0.67 + 0.17 1.09 + 0.15
babssso Water (Mm ™) 0.07 + 0.02 0.06 + 0.02 0.02 + 0.01 0.03 + 0.04
b.pssso methanol (Mm™1) 0.06 + 0.03 0.03 + 0.02 0.02 + 0.02 0.04 + 0.02
MACs65 water (m? g~ 1)® 0.75 + 0.13 0.62 + 0.09 032 + 0.07 0.44 + 0.14
MAC3g5 methanol (m? g~ ') 0.71 £ 0.16 0.51 £+ 0.12 0.27 + 0.06 0.58 + 0.05
AAE (365-550 nm) water® 6.7 + 0.8 6.6 + 0.6 72+ 09 7.7 +13
AAE (365-550 nm) methanol 82+ 14 84+ 09 8.1+ 09 80+ 1.0

2 baps: absorption coefficient.
b MAC: mass absorption cross section.
€ AAE: absorption Angstrém exponent.

(Chen and Bond, 2010; Liu et al., 2013; Zhang et al., 2013). The similar
trends obtained for water and methanol extracts indicates that the
higher b,ps recorded at short wavelengths for the methanol extracts
with respect to water are mainly due to the fact that more organic mat-
ter is extracted in methanol than in water. In particular, the similar ca-
pacity of MeS-BrC and WS-BrC to absorb light at longer wavelength
(550 nm) indicates that the organic compounds bearing chromophores
capable to absorb light at long wavelengths can be extracted in both
methanol and water. The ratio between WS-BrC bps365 and MeS-BrC
baps3ss reflects broadly the ratio of WSOC/OC in winter, pre-monsoon,
and monsoon, which indicated both WSOC and water-insoluble OC con-
tributes approximately equally to light absorption at short wavelengths.

Finally, it should be noted that the correction factors deriving the
corresponding absorption coefficients from solutions for WSOC (OC)
can be>1 (Sun et al., 2007). The BrC light absorption in aerosol is higher
than the light absorption in the extracts of a factor of 2 for water extracts
and a factor of 1.8 for methanol extracts at urban and rural sites in Geor-
gia (Liu et al,, 2013).

Fig. 4 showed scatter plots of WS-BrC bpszgs versus WSOC, and MeS-
BrC b,ps365 Versus OC, respectively. Strong correlations (R values from
0.87 to 0.90 for WS-BrC, and from 0.85 to 0.92 for MeS-BrC) were ob-
served in winter, pre-monsoon, and post-monsoon. The results
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Fig. 3. Temporal variability of the mass absorption cross section at 365 nm (MACss), and

light absorption coefficients at 365 nm (b,ps365) and 550 nm (b,pss50) for WS-BrC and
MeS-BrC, respectively. No correction factor was applied.

indicated that BrC was the dominant absorption material in extracts
and having similar sources to WSOC and OC, as reported in previous
studies (Hecobian et al., 2010; Zhang et al., 2011; Shen et al., 2014).
The lowest correlations were observed in monsoon with R values of
0.69 and 0.64 for WS-BrC and MeS-BrC, respectively. Large light absorb-
ing secondary organic aerosols can be formed from photochemical pro-
cesses in monsoon due to the local extensive forests and vehicular traffic
emission (peak travel season). The results implied more sophisticated
sources of BrC in summer than other seasons. The complexity of BrC
and dynamic changes in its physicochemical properties make it espe-
cially challenging to investigate the relationship between its composi-
tion and absorption properties.

The linear relationship between the WS-BrC bps3gs and WSOC con-
centrations for water extracts are comparable with the previous studies
in the Indo-Gangetic Plain (slope range: 0.7-1.13, R? range: 0.34-0.77)
(Srinivas and Sarin, 2014; Srinivas et al., 2016). The previous study in
southeastern United State also reported the lowest coefficient between
b.ps and WSOC in summer (Hecobian et al.,, 2010).

3.2.2. Mass absorption cross section of BrC

The MAC results of the MeS-BrC and WS-BrC were given in Fig. 3. The
mass absorption cross section values measured at 365 nm (MACzgs) in
the water extracts for four seasons were 0.75 + 0.13 m? g~ ! (winter),
0.62 + 0.09 m? g~ ! (pre-monsoon), 0.32 + 0.07 m? g~ ! (monsoon),
and 0.44 + 0.14 m? g~ ! (post-monsoon ), respectively. In methanol ex-
tracts, MACsgs were 0.71 + 0.16 m2g~',0.51 £ 0.12m? g~ !, 0.27 &
0.06 m? g~ !, and 0.58 & 0.05 m? g~ ! for winter, pre-monsoon, mon-
soon and post-monsoon, respectively (Table 1). MACsg5 values in the
water extracts are similar or higher than those in methanol extracts
during winter, pre-monsoon, monsoon seasons, which indicates that
water-insoluble carbon extracted by methanol does not have higher
light-absorbing properties per mass compared to WSOC at short
wavelength.

The highest MACsg5 values during winter indicated that organic
aerosol absorbs UV-visible light more efficiently in winter than other
seasons. The MACsgs values of WS-BrC and MeS-BrC were similar during
the winter and monsoon seasons. And larger differences of MACsgs
values between WS-BrC and MeS-BrC were obtained during the pre-
monsoon and post-monsoon. The lowest MACsgs values for WS-BrC
and MeS-BrC can be attributed to the efficiently wet scavenging and
chemical components during the monsoon season.

The high MACsg5 values during winter are comparable with the MAC
values measured previously at NCO-P Station in winter during 2013-
2014 (0.61-0.71 m? g~ ') in PM; (Kirillova et al.,, 2016), on the Indo-
Gangetic Plain (0.78 4+ 0.24 m? g~ ') in PM,5 (Srinivas and Sarin,
2014) and over the Bay of Bengal (0.6 + 0.2 m? g~ ') in TSP in November
2008 (Srinivas and Sarin, 2013). By contrast, the lower monsoon values



250 C.-S. Zhu et al. / Science of the Total Environment 625 (2018) 246-251
2.0 3.0
(a)m s (b) = Pre-Monsoon
e Winter i= ' R=0.89, slope 0.39
& R=0.87, slope 0.78 P = 251 _® Winter o ]
e 1.5 = R=0.92, slope 1.14
0
g/m o Post-Monsoon 3 2.04 L) T
8 R=0.89, slope 1.3 _Qﬁ o Post-Monsoon ¢
Q -
o° 1.0 = Pre-Monsoon ] O 1.5 R=0.85, slope 0.64 ¢ 4
Q R=0.90, slope 0.48 o
&« o 1.0+ o o 4
@ 0.54 12 o (¢}
; o Monsoon = 0.54 @) o @) i
R=0.69, slope 0.18 ©  Monsoon
R=0.64, slope 0.18
0.0 ; : : : : 0.0 A woiin Y il
0.0 0.5 1.0 1.5 2.0 2.5 3.0 00 05 10 15 20 25 30 35 40

WSOC concentration (ug m™)

OC concentration (ug m’s)

Fig. 4. Scatter plots for (a) WS-BrC b,ps at 365 nm and mass concentration of water-soluble organic carbon (WSOC), and (b) MeS-BrC b,ps at 365 nm and mass concentration of organic

carbon (OC).

were obtained in the present study compared to the MACsg5 data from
low-altitude stations in remote areas of the Bay of Bengal and the Indian
Ocean (0.4 + 0.1 m? g~ ') in PM; in January 2009 (Srinivas and Sarin,
2013); 0.46 + 0.18 m? g~ ' in PM, 5 (Bosch et al., 2014). The values of
WS-BrC and MeS-BrC MACsgs at Lulang are lower than those in the pol-
lution source regions on the Indo-Gangetic Plain: the megacity New
Delhi (1.6 + 0.5 m? g~ ') in PM, 5 (Kirillova et al., 2014) and Patiala
(1.3 £ 0.7 m? g~ ') in PM, 5 (Srinivas et al., 2016). These data show
that the BrC tends to have higher MACsg5 values in polluted conditions.
However, the lowest MACsg5 values of WS-BrC and MeS-BrC are re-
ported during the monsoon season with the highest TC and OC concen-
trations in the present study.

MAC3g5 values in winter at Lulang are comparable with the WS-BrC
MACs5g5 values measured in the East Asian outflow at Gosan site on Jeju
Island (0.65-0.75 m? g~ ' in PM, 5 and TSP) and in Beijing during sum-
mer (0.51-0.73 m? g~ ' in PM,5), but lower than in Beijing during win-
ter time (1.26-1.79m? g~ ! in PM, 5) (Cheng et al., 2011; Du et al., 2014;
Yan et al., 2015). In conclusion, the MAC3g5 determined at Lulang fall in
the range of values observed in South and East Asia.

The large seasonal variations of MACzg5s were observed, which indi-
cated that MAC value was not governed solely by absorbing efficient,
but also influenced by WSOC and OC levels, and as well as aerosol size
distribution. For example, high MAC might also be partially caused by
smaller mass median aerodynamic diameter of fine particles (Cheng
et al, 2015).

3.2.3. Wavelength dependence of BrC light absorption

The summary of the calculated absorption Angstrém Exponent
(AAE) of BrC at Lulang was shown in Fig. 5. The wavelength dependence
of the light absorption in the UV/visible range by WS-BrC and MeS-BrC
did not exhibit a clear seasonal variability (Fig. 5, and Table 1). The sea-
sonal average values of WS-BrC AAE within 365-550 nm range (6.7 +
0.8 winter, 6.6 4 0.6 pre-monsoon, 7.2 £+ 0.9 monsoon, and 7.7 £+ 1.3
post-monsoon) are higher than AAE values measured previously in
Nepal Climate Observatory-Pyramid (4.9 + 0.7 afternoon, 4.6 + 0.8
night, 330-500 nm) (Kirillova et al., 2016), in New Delhi in winter
(5.1 £ 2.0,330-400 nm) (Kirillova et al., 2014), over the Indo-Gangetic
Plain (IGP) in winter (6.0 £ 1.1, 300-700 nm) (Srinivas and Sarin,
2014). However, the AAE values in the present study are lower than
AAE of the IGP outflow measured over the Bay of Bengal during winter
months in 2008-2009 (9.1 £ 2.5, 300-700 nm) (Srinivas and Sarin,
2013).

The average values of MeS-BrC AAE within 365-550 nm (8.2 &+ 1.4
winter, 8.4 4+ 0.9 pre-monsoon, 8.1 + 0.9 monsoon, and 8.0 4+ 1.0
post-monsoon) are higher than those in methanol extracts from Nepal
Climate Observatory-Pyramid (4.0 4 1.0 afternoon, 3.7 4+ 1.3 night,
330-500 nm) (Kirillova et al., 2016), from Los Angeles Basin (4.82 +
0.49, 300-600 nm) (Zhang et al., 2013) and in an urban site of Atlanta,

GA (4.98, 300-500 nm) (Liu et al., 2013). However, the comparison of
AAE values from different studies is challenging as they are fitted within
different wavelength ranges. AAE of MeS-BrC was on average slightly
higher than that of WS-BrC within 365-550 nm wavelength range
(Fig. 5). The changes observed in AAEs can be attributed to the varia-
tions in the chemical composition or in the particle size (Sandradewi
et al., 2008).

4. Conclusions and implications

The light absorbing properties of the WS-BrC and MeS-BrC were in-
vestigated at Lulang in the southeastern margin of the Tibetan Plateau.
The light absorption coefficients of WS-BrC and MeS-BrC followed the
seasonal trends of WSOC and OC, respectively. The highest levels of TC
(3.3 + 0.7 ug m—3) and OC (2.5 + 0.6 ug m~>) were observed in the
monsoon season. Winter b,pses (1.04 Mm~! for WS-BrC and
1.47 Mm~! for MeS-BrC) were much higher than those for monsoon
(WS-BrC for 0.38 Mm™ ' and MeS-BrC for 0.67 Mm™'). MeS-BrC ab-
sorbs about 1.5 times higher at 365 nm compared to WS-BrC. The posi-
tive relationship between WSOC (OC) and WS-BrC (MeS-BrC) baps3ss
illustrated that BrC was the dominant absorption material in extracts
and having similar sources to WSOC and OC. The values of AAE (365-
550 nm) were lower for WS-BrC (6.9) compared to MeS-BrC (8.2).
The MACsg5 values varied from 0.3 (monsoon) to 0.8 (winter) for both
of MeS-BrC and WS-BrC. The observed BrC MACszg5 was within the
range of the results measured previously at the low-altitude sites and
indicating higher potential effects on climate at the high-altitude area.
The highest MACsg5 values in winter indicated the BrC with further
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oxidation and ages may become more absorbing. Considering the po-
tential effects on climate and the impact on glaciers in TP, the sources,
synoptic changes of BrC should receive special attention in future
research.
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