127 research outputs found

    Bonds, lone pairs, and shells probed by means of on-top dynamical correlations

    Full text link
    The Electron Localization Function (ELF) by Becke and Edgecombe [J. Chem. Phys. {\bf 92}, 5397 (1990)] is routinely adopted as a descriptor of atomic shells and covalent bonds. Since the ELF and its related quantities find useful exploitation also in the construction of modern density functionals, the interest in complementing the ELF is linked to both the quests of improving electronic structure descriptors and density functional approximations. The ELF uses information which is available by considering parallel-spin electron pairs in single-reference many-body states. In this work, we complement this construction with information obtained by considering antiparallel-spin pairs whose short-range correlations are modeled by a density functional approximation. As a result, the approach requires only a contained computational effort. Applications to a variety of systems show that, in this way, we gain a spatial description of the bond in H2_2 (which is not available with the ELF) together with some trends not optimally captured by the ELF in other prototypical situations

    An exact Coulomb cutoff technique for supercell calculations

    Get PDF
    We present a new reciprocal space analytical method to cutoff the long range interactions in supercell calculations for systems that are infinite and periodic in 1 or 2 dimensions, extending previous works for finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to screen the bare Coulomb interaction. The functions are analytic everywhere but in a sub-domain of the Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the non-analytical behaviour can be exactly cancelled when both the ionic and the Hartree potential are properly screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To illustrate the performance of the new scheme, we apply it to the case of the Coulomb interaction in systems with reduced periodicity (as one-dimensional chains and layers). For those test cases we address the impact of the cutoff in different relevant quantities for ground and excited state properties, namely: the convergence of the ground state properties, the static polarisability of the system, the quasiparticle corrections in the GW scheme and in the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising.Comment: Submitted to Physical Review B on Dec 23rd 200

    Excited-state normal-modes analysis: the case of porphyrins

    Full text link
    Excited state normal modes analysis is systematically applied to investigate and compare relaxation and internal conversion dynamics of a free-base porphyrin with a novel functional porphyrin derivative. We discuss strenghts and limitation of the method, and employ it to predict very different dynamical behaviours in the two compounds and to clarify the role of high reorganization energy modes in driving the system towards critical regions of the potential energy landscape. For the functionalized porphyrin, we identify modes of vibrations along which the energy gap between different excited state potential energy surfaces within the Q band manifold may vanish, or be significantly reduced, with respect to the one observed in the bare porphyrin

    Exact Coulomb cutoff technique for supercell calculations in two dimensions

    Full text link
    We present a reciprocal space technique for the calculation of the Coulomb integral in two dimensions in systems with reduced periodicity, i.e., finite systems, or systems that are periodic only in one dimension. The technique consists in cutting off the long-range part of the interaction by modifying the expression for the Coulomb operator in reciprocal space. The physical result amounts in an effective screening of the spurious interactions originated by the presence of ghost periodic replicas of the system. This work extends a previous report [C. A. Rozzi et al., Phys. Rev. B 73, 205119 (2006)], where three-dimensional systems were considered. We show that the use of the cutoffs dramatically enhances the accuracy of the calculations for a given supercell size, and it allows to describe two-dimensional systems of reduced periodicity with substantially less computational effort. In particular, we consider semiconductor quantum-dot arrays having potential applications in quantum information technology.Comment: Submitted to PRB 03/03/0

    Stability of Dirac cone in artificial graphene

    Get PDF
    Trabajo presentado al 18th ETSF Workshop celebrado en Luxemburgo del 1 al 4 de Octubre de 2013.ETSF - European Theoretical Spectroscopy Facility I3 (211956).Peer Reviewe

    Single-Walled Carbon Nanotubes as Enhancing Substrates for PNA-Based Amperometric Genosensors

    Get PDF
    A new amperometric sandwich-format genosensor has been implemented on single-walled carbon nanotubes screen printed electrodes (SWCNT-SPEs) and compared in terms of performance with analogous genoassays developed using the same methodology on non-nanostructured glassy carbon platforms (GC-SPE). The working principle of the genosensors is based on the covalent immobilization of Peptide Nucleic Acid (PNA) capture probes (CP) on the electrode surface, carried out through the carboxylic functions present on SWCNT-SPEs (carboxylated SWCNT) or electrochemically induced on GC-SPEs. The sequence of the CP was complementary to a 20-mer portion of the target DNA; a second biotin-tagged PNA signalling probe (SP), with sequence complementary to a different contiguous portion of the target DNA, was used to obtain a sandwich hybrid with an Alkaline Phosphatase-streptavidin conjugate (ALP-Strp). Comparison of the responses obtained from the SWCNT-SPEs with those produced from the non-nanostructured substrates evidenced the remarkable enhancement effect given by the nanostructured electrode platforms, achieved both in terms of loading capability of PNA probes and amplification of the electron transfer phenomena exploited for the signal transduction, giving rise to more than four-fold higher sensitivity when using SWCNT-SPEs. The nanostructured substrate allowed to reach limit of detection (LOD) of 71 pM and limit of quantitation (LOQ) of 256 pM, while the corresponding values obtained with GC-SPEs were 430 pM and 1.43 nM, respectively
    • …
    corecore