65 research outputs found

    Stochastic effects in a seasonally forced epidemic model

    Get PDF
    The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.Comment: 13 pages, 9 figures, 3 table

    Population dynamics on random networks: simulations and analytical models

    Full text link
    We study the phase diagram of the standard pair approximation equations for two different models in population dynamics, the susceptible-infective-recovered-susceptible model of infection spread and a predator-prey interaction model, on a network of homogeneous degree kk. These models have similar phase diagrams and represent two classes of systems for which noisy oscillations, still largely unexplained, are observed in nature. We show that for a certain range of the parameter kk both models exhibit an oscillatory phase in a region of parameter space that corresponds to weak driving. This oscillatory phase, however, disappears when kk is large. For k=3,4k=3, 4, we compare the phase diagram of the standard pair approximation equations of both models with the results of simulations on regular random graphs of the same degree. We show that for parameter values in the oscillatory phase, and even for large system sizes, the simulations either die out or exhibit damped oscillations, depending on the initial conditions. We discuss this failure of the standard pair approximation model to capture even the qualitative behavior of the simulations on large regular random graphs and the relevance of the oscillatory phase in the pair approximation diagrams to explain the cycling behavior found in real populations.Comment: 8 pages, 5 figures; we have expanded and rewritten the introduction, slightly modified the abstract and the text in other sections; also, several new references have been added in the revised manuscript (Refs. [17-25,30,35])

    Impact of commuting on disease persistence in heterogeneous metapopulations

    Full text link
    We use a stochastic metapopulation model to study the combined effects of seasonality and spatial heterogeneity on disease persistence. We find a pronounced effect of enhanced persistence associated with strong heterogeneity, intermediate coupling strength and moderate seasonal forcing. Analytic calculations show that this effect is not related with the phase lag between epidemic bursts in different patches, but rather with the linear stability properties of the attractor that describes the steady state of the system in the large population limit.Comment: main text (8 pages, 5 figures); supplementary material (17 pages, 3 figures) and electronic supplementary material (ESM.mov

    Age-specific transmission dynamics of SARS-CoV-2 during the first two years of the pandemic

    Full text link
    During its first two years, the SARS-CoV-2 pandemic manifested as multiple waves shaped by complex interactions between variants of concern, non-pharmaceutical interventions, and the immunological landscape of the population. Understanding how the age-specific epidemiology of SARS-CoV-2 has evolved throughout the pandemic is crucial for informing policy decisions. We developed an inference-based modelling approach to reconstruct the burden of true infections and hospital admissions in children, adolescents and adults over the seven waves of four variants (wild-type, Alpha, Delta, Omicron BA.1) during the first two years of the pandemic, using the Netherlands as the motivating example. We find that reported cases are a considerable underestimate and a generally poor predictor of true infection burden, especially because case reporting differs by age. The contribution of children and adolescents to total infection and hospitalization burden increased with successive variants and was largest during the Omicron BA.1 period. Before the Delta period, almost all infections were primary infections occurring in naive individuals. During the Delta and Omicron BA.1 periods, primary infections were common in children but relatively rare in adults who experienced either re-infections or breakthrough infections. Our approach can be used to understand age-specific epidemiology through successive waves in other countries where random community surveys uncovering true SARS-CoV-2 dynamics are absent but basic surveillance and statistics data are available.Comment: 23 pages, 5 figures, 1 table; supplementary materials to the main text available at https://github.com/oboldea/COVID_age_region

    Modeling the long term dynamics of pre-vaccination pertussis

    Full text link
    The dynamics of strongly immunizing childhood infections is still not well understood. Although reports of successful modeling of several incidence data records can be found in the literature, the key determinants of the observed temporal patterns have not been clearly identified. In particular, different models of immunity waning and degree of protection applied to disease and vaccine induced immunity have been debated in the literature on pertussis. Here we study the effect of disease acquired immunity on the long term patterns of pertussis prevalence. We compare five minimal models, all of which are stochastic, seasonally forced, well-mixed models of infection based on susceptible-infective-recovered dynamics in a closed population. These models reflect different assumptions about the immune response of naive hosts, namely total permanent immunity, immunity waning, immunity waning together with immunity boosting, reinfection of recovered, and repeat infection after partial immunity waning. The power spectra of the output prevalence time series characterize the long term dynamics of the models. For epidemiological parameters consistent with published data for pertussis, the power spectra show quantitative and even qualitative differences that can be used to test their assumptions by comparison with ensembles of several decades long pre-vaccination data records. We illustrate this strategy on two publicly available historical data sets.Comment: paper (31 pages, 11 figures, 1 table) and supplementary material (19 pages, 5 figures, 2 tables

    Impact of sexual trajectories of men who have sex with men on the reduction in HIV transmission by pre-exposure prophylaxis

    Get PDF
    Acknowledgments This project was funded by the Netherlands Organisation for Health Research and Development ZonMw grant 522002004.Peer reviewedPublisher PD

    Elimination prospects of the Dutch HIV epidemic among men who have sex with men in the era of preexposure prophylaxis.

    Get PDF
    OBJECTIVE: Preexposure prophylaxis (PrEP) is a promising intervention to help end the HIV epidemic among men who have sex with men (MSM) in the Netherlands. We aimed to assess the impact of PrEP on HIV prevalence in this population and to determine the levels of PrEP coverage necessary for HIV elimination. DESIGN AND METHODS: We developed a mathematical model of HIV transmission in a population stratified by sexual risk behavior with universal antiretroviral treatment (ART) and daily PrEP use depending on an individual's risk behavior. We computed the effective reproduction number, HIV prevalence, ART and PrEP coverage for increasing ART and PrEP uptake levels, and examined how these were affected by PrEP effectiveness and duration of PrEP use. RESULTS: At current levels of ART coverage of 80%, PrEP effectiveness of 86% and PrEP duration of 5 years, HIV elimination required 82% PrEP coverage in the highest risk group (12 000 MSM with more than 18 partners per year). If ART coverage increased by 9%, the elimination threshold was at 70% PrEP coverage. For shorter PrEP duration and lower effectiveness elimination prospects were less favorable. For the same number of PrEP users distributed among two groups with highest risk behavior, prevalence dropped from the current 8 to 4.6%. CONCLUSION: PrEP for HIV prevention among MSM could, in principle, eliminate HIV from this population in the Netherlands. The highest impact of PrEP on prevalence was predicted when ART and PrEP coverage increased simultaneously and PrEP was used by the highest risk individuals

    The Rhythm of Risk : Sexual Behaviour, PrEP Use and HIV Risk Perception Between 1999 and 2018 Among Men Who Have Sex with Men in Amsterdam, The Netherlands

    Get PDF
    Funding Information: This project was funded by the Netherlands Organisation for Health Research and Development ZonMw Grant 522004009. The Amsterdam Cohort Studies on HIV infection, a collaboration between the Public Health Service of Amsterdam, the Amsterdam University Medical Centers location AMC, Sanquin Blood Supply Foundation, MC Jan van Goyen and DC Clinics Lairesse, are part of the Netherlands HIV Monitoring Foundation and financially supported by the Netherlands National Institute for Public Health and the Environment. The ACS gratefully acknowledge all the study participants for their co-operation and participation and research nurses for collecting the data (Samantha de Graaf and Leeann Storey). The authors also thank Dominique Loomans, Ertan Ersan, Maartje Dijkstra, Liza Coyer, and Ward van Bilsen for data management.Peer reviewedPublisher PD

    Controlling the pandemic during the SARS-CoV-2 vaccination rollout

    Get PDF
    © The Author(s) 2021. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.There is a consensus that mass vaccination against SARS-CoV-2 will ultimately end the COVID-19 pandemic. However, it is not clear when and which control measures can be relaxed during the rollout of vaccination programmes. We investigate relaxation scenarios using an age-structured transmission model that has been fitted to age-specific seroprevalence data, hospital admissions, and projected vaccination coverage for Portugal. Our analyses suggest that the pressing need to restart socioeconomic activities could lead to new pandemic waves, and that substantial control efforts prove necessary throughout 2021. Using knowledge on control measures introduced in 2020, we anticipate that relaxing measures completely or to the extent as in autumn 2020 could launch a wave starting in April 2021. Additional waves could be prevented altogether if measures are relaxed as in summer 2020 or in a step-wise manner throughout 2021. We discuss at which point the control of COVID-19 would be achieved for each scenario.G.R., J.V., A.N., M.C.G. were supported by Fundação para a Ciência e a Tecnologia (FCT) project reference 131_596787873, awarded to G.R. M.V. was supported by the European Union H2020 ERA project (No. 667824 - EXCELLtoINNOV). The contribution of C.H.v.D. was under the auspices of the US Department of Energy (contract number 89233218CNA000001) and supported by the National Institutes of Health (grant number R01-OD011095). MK acknowledges support from the Netherlands Organization for Health Research and Development (ZonMw) Grant no. 10430022010001.info:eu-repo/semantics/publishedVersio
    corecore