5 research outputs found

    Unsymmetrical Relaxation Paths of the Excited States in Cyanine Dyes Detected by Time-Resolved Fluorescence:Polymethinic and Polyenic Forms

    Get PDF
    Novel applications of organic dyes and vast opportunities for their molecular tailoring keep focus of scientific community on the issues of symmetry breaking in the systems having different location of uncompensated charge, which has tremendous impact on photoluminescent properties of the dyes. In this paper, we provide distinctive experimental evidences of three relaxation paths (one symmetrical and two unsymmetrical) of excited states by analysis of lifetime and spectra of time-resolved fluorescence at low temperature with strong support of quantum-chemical modeling. Importantly, the studied cyanine dye (astraphloxin) in aqueous solution has two different unsymmetrical relaxation paths of excites states in the polymethinic and donor-acceptor polyenic forms, where the last form strongly diminishes in less polar media. The experimental and computational results provide essential fundamental knowledge of molecular electronic relaxations substantially affected by matrix rigidity and polarity for design and photonic applications of elongated π-electronic systems

    Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Get PDF
    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application

    Emergence of additional visible range photoluminescence due to aggregation of cyanine dye:astraphloxin on carbon nanotubes dispersed with anionic surfactant

    Get PDF
    Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare

    Effect of the charge state on the photoluminescence spectra of melanin

    Get PDF
    Steady-state and time-resolved photoluminescence (PL) spectra of natural and synthetic melanin, as well as melanin composites with surfactant, sodium dodecylbenzenesulfonate, and polymethine dye, astraphloxin, have been studied. The melanin molecules having differently charged peripheral groups with terminal O atoms and OH groups mixed with the negatively charged surfactant or positively charged astraphloxin dye feature new PL spectral bands. The kinetics of PL and time-resolved emission spectra for the melanin and the composites were also investigated and discussed in terms of intermolecular complexation, nano-aggregation and formation of chargetransfer states. The studies are aiming to understand the electronic properties of various melanins, particularly natural ones

    Self-Assembly for Two Types of J-Aggregates: Cis-Isomers of Dye on the Carbon Nanotube Surface and Free Aggregates of Dye Trans-Isomers

    Get PDF
    Development of novel nanoscale devices requires unique functional nanomaterials. Furthermore, chemical design of different nanoparticles in one unit is a complex task, particularly the application of self-assembly J-aggregates, which can substantially advance the nanomaterial's properties due to resonant delocalization of excitons. Here, we have demonstrated for the first time formation of resonantly coherent J-aggregates on carbon nanotubes with highly efficient energy transfer from the aggregates to the nanotubes. All the energy of photons absorbed by the aggregates is conveyed to the nanotubes, completely quenching the J-band emission and photosensitizing the nanotubes. Overall, we discovered formation of two types of J-aggregates, where one type is related to self-assembly of cis-isomers on the nanotube surface and the second type is associated to self-organizing trans-isomers into free J-aggregates without the nanotubes. Importantly, the J-aggregates on carbon nanotubes with strong energy transfer peaks of photoluminescence in the near infrared range are of high interest for practical applications on biomedical imaging and nanoscale optoelectronic and nanophotonic devices
    corecore