281 research outputs found

    Liquid Phase Electrochemistry at Ultralow Temperatures

    Get PDF
    Fluid electrolyte solutions based on mixtures of butyronitrile (PrCN) and ethyl chloride (EtCl) with or as electrolyte freeze below −180°C and provide excellent media for cryogenic electrochemical experiments. A 1:2 mixture of PrCN and EtCl exhibits the best combination of freezing point and ionic conductivity for ultralow temperature electrochemistry. Diffusion coefficients for bis(pentamethylcyclopentadienyl) iron are measurable by potential step chronoamperometry down to −160°C using a conventionally sized electrode, but the resistivity of the solvent mixture is such that potential sweep voltammetry benefits from the use of microdisk (10 and 25 μm diam Pt) or microband (0.2 μm wide Au) electrodes. Voltammetry at a chemically modified electrode down to −170°C is presented for the case of thin films

    Distance-dependent Electron Hopping Conductivity and Nanoscale Lithography of Chemically-linked Gold Monolayer Protected Cluster Films

    Get PDF
    Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and ω-carboxylate alkanethiolate monolayers, linked together by carboxylate–Cu2+–carboxylate bridges, exhibit average edge-to-edge cluster spacings that vary with the numbers of methylene segments in the alkanethiolate ligand as determined by a combined atomic force microscopy (AFM)/UV-Vis spectroscopy method. The electronic conductivity (σEL) of dry films is exponentially dependent on the cluster spacing, consistent with electron tunneling through the alkanethiolate chains and non-bonded contacts between those chains on individual, adjacent MPCs. The calculated electronic coupling factor (β) for tunneling between MPCs is 1.2 Å−1, which is similar to other values obtained for tunneling through hydrocarbon chains. Electron transfer rate constants measured on the films reflect the increased cluster–cluster tunneling distance with increasing chainlength. The MPC films are patterned by scanning the surface with an AFM or scanning tunneling microscopy (STM) tip under appropriate conditions. The patterning mechanism is physical in nature, where the tip scrapes away the film in the scanned region. Large forces are required to pattern films with AFM while normal imaging conditions are sufficient to produce patterns with STM. Patterns with dimensions as small as 100 nm are shown. Subsequent heating (300 °C) of the patterned surfaces leads to a metallic Au film that decreases in thickness and is smoother compared to the MPC film, but retains the initial shape and dimensions of the original pattern

    The potential dependence of electrical conductivity and chemical charge storage of poly(pyrrole) films on electrodes

    Get PDF
    The electrical conductivity of solvent and electrolyte-wetted poly(pyrrole) films is measured, both statically and dynamically, as a function of the potential applied to an electrode in contact with the film. The applied potential determines the film cxidation state. Poly(pyrrole) electrical conductivity is ohmic and indeendent of potential from 0 to +0.4V vs. SSCE, and decreases and becomes less ohmic at more negative potentials. Measurements of the chemically reactive charge stored in poly(pyrrole) as a function of potential were combined with the electrical conductivity results to yield a profile of electrical conductivity vs. average darge per monamer site in the polymer. Electrical conductivity is independent of monomer charge above about 0.15 holes/monomer unit

    Growth, Conductivity, and Vapor Response Properties of Metal Ion-Carboxylate linked Nanoparticle Films

    Get PDF
    Nanoparticles of metals (Au, Ag, Pd, alloys) in the size range 1–3 nm diameter can be stabilized against aggregation of the metal particles by coating the metal surface with a dense monolayer of ligands (thiolates). The stabilization makes it possible to analytically define the nanoparticle composition (for example, Au140(hexanethiolate)53, I) and to elaborate the chemical functionality of the protecting monolayer (for example, Au140(C6)35(MUA)18, II, where C6 = hexanethiolate and MUA = mercaptoundecanoic acid). Network polymer films (IIfilm) on interdigitated array electrodes can be prepared from II, based on cation coordination (i.e., Cu2+, Zn2+, Ag+, methyl viologen) by the carboxylates of MUA. The electronic conductivity of the IIfilm network polymer films occurs by electron hopping between the Au140 nanoparticle cores, and offers an avenue for investigation of metal-to-metal nanoparticle electron transfer chemistry. The report begins with a brief summary of what is known about metal nanoparticle electron transfer chemistry. The investigation goes on to assess factors that influence the dynamics of film formation as well as film conductivity, in the interest of better understanding the parameters affecting electron hopping rates in IIfilm network polymer films. Finally, sorption of organic vapors into IIfilm causes a decreased electronic conductivity and increased mass that can be assessed using quartz crystal microbalance measurements. The change in electronic conductivity can be exploited for the sensing of organic vapors

    Parallel variation of mass transport and heterogeneous and homogeneous electron transfer rates in hybrid redox polyether molten salts

    Get PDF
    Metal complexes can be prepared as highly viscous (semisolid), room temperature molten salts by combining them with oligomeric polyether substituents. The fluidity and transport properties of these hybrid redox polyether melts can be systematically manipulated by changing the oligomeric chain lengths and by adding unattached oligomers as plasticizers. This paper describes the voltammetrically measured transport properties of several Co(II) polypyridine (2,2‘-bipyridine, phenanthroline) melts. The properties evaluated are the physical self-diffusion coefficient (DPHYS) of the cationic complex in its melt, the diffusivity of its counterion (DCION), the heterogeneous electron-transfer rate constant (kHET) of the Co(III/II) oxidation at the electrode surface, and the rate constant (kEX) for homogeneous electron self-exchange between Co(II) and Co(I) in the mixed valent layer next to the electrode. These dynamics parameters change in parallel manners, over a large (\u3e103) range of values, when the melt fluidity is changed by plasticizers or temperature. While kHET and kEX both change systematically with DPHYS, they change on a more nearly proportional basis with DCION. The latter relationship is interpreted as a kind of solvent dynamics control in which both the homogeneous Co(II/I) and heterogeneous Co(III/II) reaction rates are controlled by the ionic atmosphere relaxation time constant, namely, the time constant of redistribution of counterions following an electron-transfer step that has produced a nonequilibrium charge distribution. DCION provides a measure of the ion atmosphere relaxation rate

    Synthesis, Electrochemistry, and Excited-State Properties of Three Ru(II) Quaterpyridine Complexes

    Get PDF
    The complexes [Ru(qpy)LL′]2+ (qpy = 2,2′:6′,2″:6″,2‴-quaterpyridine), with 1: L = acetonitrile, L′= chloride; 2: L = L′= acetonitrile; and 3: L = L′= vinylpyridine, have been prepared from [Ru(qpy) (Cl)2]. Their absorption spectra in CH3CN exhibit broad metal-to-ligand charge transfer (MLCT) absorptions arising from overlapping 1A1 → 1MLCT transitions. Photoluminescence is not observed at room temperature, but all three are weakly emissive in 4:1 ethanol/methanol glasses at 77 K with broad, featureless emissions observed between 600 and 1000 nm consistent with MLCT phosphorescence. Cyclic voltammograms in CH3CN reveal the expected RuIII/II redox couples. In 0.1 M trifluoroacetic acid (TFA), 1 and 2 undergo aquation to give [RuII(qpy)(OH2)2]2+, as evidenced by the appearance of waves for the couples [RuIII(qpy)(OH2)2]3+/[RuII(qpy)(OH2)2]2+, [RuIV(qpy)(O)(OH2)]2+/[RuIII(qpy)(OH2)2]3+, and [RuVI(qpy)(O)2]2+/[RuIV(qpy)(O)(OH2)]2+ in cyclic voltammograms

    Electron Hopping Conductivity and Vapor Sensing Properties of Flexible Network Polymer Films of Metal Nanoparticles

    Get PDF
    Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and ω-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (σEL) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film\u27s internal structure is shown to account for changes in σEL. The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The σEL results concur with the behavior of UV−vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both

    Ion atmosphere relaxation controlled electron transfers in cobaltocenium polyether molten salts

    Get PDF
    A room-temperature redox molten salt for the study of electron transfers in semisolid media, based on combining bis(cyclopentadienyl)cobalt with oligomeric polyether counterions, [Cp2Co](MePEG350SO3), is reported. The transport properties of the new molten salt can be varied (plasticized) by varying the polyether content. The charge transport rate during voltammetric reduction of the ionically conductive [Cp2Co](MePEG350SO3) molten salt exceeds the actual physical diffusivity of [Cp2Co]+ because of rapid [Cp2Co]+/0 electron self-exchanges. The measured [Cp2Co]+/0 electron self-exchange rate constants (kEX) are proportional to the diffusion coefficients (DCION) of the counterions in the melt. The electron-transfer activation barrier energies are also close to those of ionic diffusion but are larger than those derived from optical intervalent charge-transfer results. Additionally, the [Cp2Co]+/0 rate constant results are close to those of dissimilar redox moieties in molten salts where DCION values are similar. All of these characteristics are consistent with the rates of electron transfers of [Cp2Co]+/0 (and the other donor−acceptor pairs) being controlled not by the intrinsic electron-transfer rates but by the rate of relaxation of the ion atmosphere around the reacting pair. In the low driving force regime of mixed-valent concentration gradients, the ion atmosphere relaxation is competitive with electron transfer. The results support the generality of the recently proposed model of ionic atmosphere relaxation control of electron transfers in ionically conductive, semisolid materials

    Electrical characterization of gel collected from shark electrosensors

    Get PDF
    To investigate the physical mechanism of the electric sense, we present an initial electrical characterization of the glycoprotein gel that fills the electrosensitive organs of marine elasmobranchs Í‘sharks, skates, and raysÍ’. We have collected samples of this gel, postmortem, from three shark species, and removed the majority of dissolved salts in one sample via dialysis. Here we present the results of dc conductivity measurements, low-frequency impedance spectroscopy, and electrophoresis. Electrophoresis shows a range of large proteinbased molecules fitting the expectations of glycoproteins, but the gels of different species exhibit little similarity. The electrophoresis signature is unaffected by thermal cycling and measurement currents. The dc data were collected at various temperatures, and at various electric and magnetic fields, showing consistency with the properties of seawater. The impedance data collected from a dialyzed sample, however, show large values of static permittivity and a loss peak corresponding to an unusually long relaxation time, about 1 ms. The exact role of the gel is still unknown, but our results suggest its bulk properties are well matched to the sensing mechanism, as the minimum response time of an entire electric organ is on the order of 5 ms
    • …
    corecore