2,976 research outputs found

    On the presence of giant particles downwind of ships in the marine boundary layer

    Get PDF
    This study examines large oceangoing ships as a source of giant cloud condensation nuclei (D_p > 2 µm) due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in “control” areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of ~2, ~10, and ~20 µm as high as 2.7, 5.5, and 7.5, respectively. ER decreases with increasing downwind distance and altitude. ER becomes better correlated with ship size variables (gross tonnage, length, and beam) as the minimum size threshold increases from 2 to 20 µm, whereas ship speed has a less distinct relationship with ER. One case study of a container ship shows that there are higher concentrations of sea-salt tracer species behind it relative to adjacent control areas. These results have implications for cloud properties and precipitation in marine boundary layers exposed to ship traffic

    Relationships Between Giant Sea Salt Particles and Clouds Inferred from Aircraft Physicochemical Data

    Get PDF
    This study uses airborne data from multiple field campaigns off the California coast to determine the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of giant cloud condensation nuclei (GCCN), specifically sea salt, on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameters > 5 µm and cloud water chloride concentration, are significantly correlated (95% confidence) with each other, and both exhibit expected relationships with other parameters (e.g., surface wind) that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements include precipitation rate (R) and the standard deviation of the sub-cloud vertical velocity owing likely to scavenging effects and improved mixing/transport of sea salt to cloud base, respectively. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., R) to perturbations in giant sea salt particle concentration, as evaluated from MERRA-2 reanalysis data, is consistent with the aircraft data

    Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean

    Get PDF
    Cloud adiabaticity (α) is defined as the ratio of the actual liquid water path (LWP_(measured)) in a cloud to its corresponding adiabatic value (LWP_(ad)). Processes such as drizzle and entrainment can lead to subadiabatic LWP_(measured). This study examines α and its relationship to microphysical properties for 86 cloud events over the Northeast Pacific Ocean based on data collected during four separate summertime airborne campaigns. For the study region, α was found to be 0.766 ± 0.134. For most cases, clouds with a low value of α were found to have lower droplet number concentration (N_d), higher droplet effective radius (r_e), higher relative dispersion (d), and higher rain rate (R). The subcloud aerosol concentration (N_a) was often less for the low‐α cases. The relationship between α and the vertical profiles and cloud‐top characteristics for both the cloud droplet‐only spectrum and full spectrum (cloud and rain droplets) is also examined. Inclusion of rain droplets produced a larger change in d for the low‐α clouds as compared to the high‐α clouds. On average, R increased at cloud top for high‐α clouds but decreased at cloud top for low‐α clouds. Accounting for α when estimating N_d from Moderate Resolution Imaging Spectroradiometer retrievals results in better agreement with in situ N_d values. Results of this work motivate the need for additional focus on the factors governing α, such as cloud type, and implications of its value, especially for remote‐sensing retrievals

    Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface

    Get PDF
    Data from three research flights, conducted over water near the California coast, are used to investigate the boundary between stratocumulus cloud decks and clearings of different sizes. Large clearings exhibit a diurnal cycle with growth during the day and contraction overnight and a multiday life cycle that can include oscillations between growth and decay, whereas a small coastal clearing was observed to be locally confined with a subdiurnal lifetime. Subcloud aerosol characteristics are similar on both sides of the clear–cloudy boundary in the three cases, while meteorological properties exhibit subtle, yet important, gradients, implying that dynamics, and not microphysics, is the primary driver for the clearing characteristics. Transects, made at multiple levels across the cloud boundary during one flight, highlight the importance of microscale (~1 km) structure in thermodynamic properties near the cloud edge, suggesting that dynamic forcing at length scales comparable to the convective eddy scale may be influential to the larger-scale characteristics of the clearing. These results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol–cloud interactions and scales of variability responsible for the evolution of stratocumulus clearings

    Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition

    Get PDF
    This study reports on airborne measurements of stratocumulus cloud properties under varying degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from five total airborne campaigns based in Marina, California, with two of them including influence from wildfires in different areas along the coast of the western United States. The results indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (N_d) as compared to respective above‐cloud aerosol data. Given that the majority of BB particles resided above cloud tops, this is an important consideration for future work in the region as the data indicate that the subcloud BB particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB‐impacted clouds as compared to non‐BB clouds due, at least partly, to less hygroscopic aerosols. Relationships between N_d and either droplet effective radius or drizzle rate are preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for varying degrees of BB influence as long as N_d is known. Lastly, the composition of both droplet residual particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences observed for different fire sources stemming largely from effects of plume aging time and dust influence

    Why Global Inequality Matters: Derivative Global Egalitarianism

    Get PDF
    This article integrates empirical and normative discussions about why global economic inequalities matter in critically examining an approach known as derivative global egalitarianism (DGE). DGE is a burgeoning perspective that opposes excessive global economic inequality not based on the intrinsic value of equality but inequality\u27s negative repercussions on other values. The article aims to advance the research agenda by identifying and critically evaluating four primary varieties of DGE arguments from related but distinct literatures, which span a number of disciplines, including economics, international relations, and political philosophy. Overall, DGE offers a number of persuasive arguments as to why current levels of global inequality are of concern, but aspects of DGE beg further philosophical and empirical examination. By situating DGE within the wider theoretical and empirical contexts, this article provides resources for its critical assessment and theoretical development

    Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    Get PDF
    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July–August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (D_p > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition
    corecore