3,235 research outputs found

    The Brain, Cognitive Enhancement Devices, and European Regulation

    Get PDF
    From the Introduction: Exciting advances in neuroscience have given rise to devices—now being sold worldwide—which hold the promise of enhancing human cognition. This concerns Maslen et al.—authors of the article, The Regulation of Cognitive Enhancement Devices: Extending the Medical Model—because there are unaddressed possible harms from such equipment. Cognitive enhancement devices (CEDs) are currently entering the European market without special regulations. Their unique ability to influence the brain in potentially deleterious ways is not being accounted for by the law, exposing consumers to risk. In arguing for such regulation, Maslen et al. present risk analyses of certain devices that interact with the brain. They then propose CED-specific additions to existing European medical device regulation. First, they recommend a positive list of CEDs to be regulated. Second, they offer a three-tiered framework for categorizing CEDs, determining market approval, and what level of government scrutiny they receive based on risks and benefits. The authors’ assessment, while demonstrating legitimate concerns, presents a flawed analysis of CEDs and is ultimately unnecessary. We disagree with their definition of CEDs and classifications for certain devices. Moreover, we believe that the regulatory gap Maslen et al. seek to address is not as profound as they portray. Steps are underway to fill this gap in the immediate future, obviating the need for their proposal. Finally, we argue that the authors incorrectly balance risk and benefit when determining CED market approval

    Ethics of the Electrified Mind: Defining Issues and Perspectives on the Principled Use of Brain Stimulation in Medical Research and Clinical Care

    Get PDF
    In recent years, non-pharmacologic approaches to modifying human neural activity have gained increasing attention. One of these approaches is brain stimulation, which involves either the direct application of electrical current to structures in the nervous system or the indirect application of current by means of electromagnetic induction. Interventions that manipulate the brain have generally been regarded as having both the potential to alleviate devastating brain-related conditions and the capacity to create unforeseen and unwanted consequences. Hence, although brain stimulation techniques offer considerable benefits to society, they also raise a number of ethical concerns. In this paper we will address various dilemmas related to brain stimulation in the context of clinical practice and biomedical research. We will survey current work involving deep brain stimulation, transcranial magnetic stimulation and transcranial direct current stimulation. We will reflect upon relevant similarities and differences between them, and consider some potentially problematic issues that may arise within the framework of established principles of medical ethics: nonmaleficence and beneficence, autonomy, and justice

    Fast Forward: Supramarginal Gyrus Stimulation Alters Time Measurement

    Get PDF
    The neural basis of temporal processing is unclear. We addressed this important issue by performing two experiments in which repetitive transcranial magnetic stimulation (rTMS) was administered in different sessions to the left or right supramarginal gyrus (SMG) or vertex; in both tasks, two visual stimuli were presented serially and subjects were asked to judge if the second stimulus was longer than the first (standard) stimulus. rTMS was presented on 50% of trials. Consistent with a previous literature demonstrating the effect of auditory clicks on temporal judgment, rTMS was associated with a tendency to perceive the paired visual stimulus as longer in all conditions. Crucially, rTMS to the right SMG was associated with a significantly greater subjective prolongation of the associated visual stimulus in both experiments. These findings demonstrate that the right SMG is an important element of the neural system underlying temporal processing and, as discussed, have implications for neural and cognitive models of temporal perception and attention

    Causal evidence for a mechanism of semantic integration in the angular gyrus as revealed by high-definition transcranial direct current stimulation

    Get PDF
    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits

    Noninvasive Transcranial Direct Current Stimulation Over the Left Prefrontal Cortex Facilitates Cognitive Flexibility in Tool Use

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Cognitive Neuroscience on 2013-06-1, available online: http://www.tandfonline.com/10.1080/17588928.2013.768221.Recent neuroscience evidence suggests that some higher-order tasks might benefit from a reduction in sensory filtering associated with low levels of cognitive control. Guided by neuroimaging findings, we hypothesized that cathodal (inhibitory) transcranial direct current stimulation (tDCS) will facilitate performance in a flexible use generation task. Participants saw pictures of artifacts and generated aloud either the object’s common use or an uncommon use for it, while receiving cathodal tDCS (1.5 mA) either over left or right PFC, or sham stimulation. A forward digit span task served as a negative control for potential general effects of stimulation. Analysis of voice-onset reaction times and number of responses generated showed significant facilitative effects of left PFC stimulation for the uncommon, but not the common use generation task and no effects of stimulation on the control task. The results support the hypothesis that certain tasks may benefit from a state of diminished cognitive control

    Creation of a universal experimental protocol for the investigation of transfer and persistence of trace evidence:Part 2 – Implementation and preliminary data

    Get PDF
    This is the second paper on the development and implementation of a universal experimental protocol for transfer and persistence of trace evidence. Here, we present the results of five individual researchers who implemented the universal experimental protocol for the first time. Over 2500 images were collected, computationally analysed and statistically compared. The results were shown to be reliable and consistent under all conditions tested and were used to model the rate of loss of transferred particles over a 7-day timescale. The protocol was additionally extended to include a test of camera settings. The protocol was found to be useable and robust in this preliminary trial paving the way for it to be deployed more widely

    Galileo dust data from the jovian system: 2000 to 2003

    Full text link
    The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003. The Galileo dust detector monitored the jovian dust environment between about 2 and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo dust instrument for the period January 2000 to September 2003. We report on the data of 5389 particles measured between 2000 and the end of the mission in 2003. The majority of the 21250 particles for which the full set of measured impact parameters (impact time, impact direction, charge rise times, charge amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in radius), most of them originating from Jupiter's innermost Galilean moon Io. Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280 R_J from Jupiter. This peak in dust emission appears to coincide with strong changes in the release of neutral gas from the Io torus. Strong variability in the Io dust flux was measured on timescales of days to weeks, indicating large variations in the dust release from Io or the Io torus or both on such short timescales. Galileo has detected a large number of bigger micron-sized particles mostly in the region between the Galilean moons. A surprisingly large number of such bigger grains was measured in March 2003 within a 4-day interval when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003 provided the first actual comparison of in-situ dust data from a planetary ring with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space Scienc
    • …
    corecore