5,585 research outputs found

    Is Therapeutic Abortion Scientifically Justified?

    Get PDF

    Oblique hypervelocity impact response of dual-sheet structures

    Get PDF
    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft

    Inside the Economist's Mind: The History of Modern Economic Thought, as Explained by Those Who Produced It

    Get PDF
    This is the front matter from a book of interviews to be published by Blackwell. The book is coedited by W. A. Barnett and P. A. Samuelson. The front matter includes the Table of Contents, Coeditor Preface by W. A. Barnett, Coeditor Foreword by Paul A. Samuelson, and History of Thought Introduction by E. Roy Weintraub. The front matter highlights some of the more startling and controversial statements contained in the interviews and puts the interviews into context relative to the history of modern economic thought. The interviews reprinted in this book include: (1) Wassily Leontief interviewed by Duncan Foley. (2) David Cass interviewed jointly by Steven Spear and Randall Wright. (3) Robert E. Lucas interviewed by Bennett T. McCallum. (4) Janos Kornai interviewed by Olivier Blanchard. (5) Franco Modigliani interviewed by William Barnett and Robert Solow. (6) Milton Friedman interviewed by John Taylor. (7) Paul A. Samuelson interviewed by William A. Barnett. (8) Paul Volcker interviewed by Perry Mehrling. (9) Martin Feldstein interviewed by James Poterba. (10) Christopher Sims interviewed by Lars Peter Hansen. (11) Robert Shiller interviewed by John Campbell. (12) Stanley Fischer interviewed by Olivier Blanchard. (13) Jacques Drèze interviewed by Pierre Dehez and Omar Licandro. (14) Tom Sargent interviewed by George Evans and Seppo Honkapohja. (15) Robert Aumann interviewed by Sergiu Hart. (16) James Tobin and Robert Shiller interviewed by David Colander.history of economic thought, Samuelson, macroeconomics, microeconomics, policy, interviews

    Product Protection, the Key to Developing High Performance Methane Selective Oxidation Catalysts

    Get PDF
    Selective, direct conversion of methane to methanol might seem an impossible task since the C−H bond energy of methane is 105 kcal mol^(−1) compared to the C−H bond energy for methanol of 94. We show here that the Catalytica catalyst is successful because the methanol is protected as methyl bisulfate, which is substantially less reactive than methanol toward the catalyst. This analysis suggests a limiting performance for systems that operate by this type of protection that is well above the Catalytica system

    An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    Get PDF
    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment

    Iridium complexes bearing a PNP ligand, favoring facile C(sp^3)–H bond cleavage

    Get PDF
    Hydrogen iodide is lost upon reaction of PNP with IrI_3, where PNP = 2,6-bis-(di-t-butylphosphinomethyl)pyridine to give crystallographically characterized Ir(PNP)*(I)_2, which reacts with H_2 to give Ir(PNP)(H)(I)_2. Ir(PNP)(Cl)_3 is relatively inert towards the intramolecular C–H activation of the tert-butyl's of the PNP ligand

    Transition state energy decomposition study of acetate-assisted and internal electrophilic substitution C−H bond activation by (acac-O,O)_2Ir(X) complexes (X = CH_3COO, OH)

    Get PDF
    Chelate-assisted and internal electrophilic substitution type transition states were studied using a DFT-based energy decomposition method. Interaction energies for benzene and methane C−H bond activation by (acac-O,O)_2Ir(X) complexes (X = CH_3COO and OH) were evaluated using the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). A ratio of ~1.5:1 for forward to reverse charge-transfer between (acac-O,O)_2Ir(X) and benzene or methane transition state fragments confirms “ambiphilic” bonding, the result of an interplay between the electrophilic iridium center and the internal base component. This analysis also revealed that polarization effects account for a significant amount of transition state stabilization. The energy penalty to deform reactants into their transition state geometry, distortion energy, was also used to understand the large activation energy difference between six-membered and four-membered acetate-assisted transition states and help explain why these complexes do not activate the methane C−H bond

    Ligand Lone-Pair Influence on Hydrocarbon C-H Activation: A Computational Perspective

    Get PDF
    Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac)_2MX and TpM(L)X (M=Ir, Ru, Os, and Rh; acac=acetylacetonate, Tp=tris(pyrazolyl)-borate; X=CH_3, OH, OMe, NH_2, and NMe_2) systems for methane C-H bond activation reaction kinetics and thermodynamics.We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic d_π-p_π repulsions for M-OR and M-NR_2 systems versus M-CH_3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps.We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps
    corecore