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TECHNICAL MEMORANDUM

AN ANALYSIS OF PENETRATION AND RICOCHET PHENOMENA

IN OBLIQUE HYPERVELOClTY IMPACT

INTRODUCTION

All spacecrali with a mission duration of more than a few days are susceptible to impacts

by meteoroid and pieces of orbiting space debris. These impacts occur at high speeds and can dam-

age flight-critical systems of a spacecraft. This damage can in turn lead to catastrophic failure of

the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into

account the effects of such impacts on the spacecraft structure and all of its exposed subsystem

components, such as solar arrays and instrumentation units.

Until recently, meteoroid impact was better understood and believed to be more serious than

the impact of orbital space debris. However, recent studies and workshops on orbital debris have

determined that orbital debris is becoming an increasingly serious hazard to long-duration near-

Earth space missions [!-4]. In certain regions of Earth orbit, the threat of orbital debris impact now

exceeds the threat posed by meteoroid impact. It is evident from these and other studies that the

orbital debris problem is serious, and that the probability of collision is rising as the orbital popula-

tion increases. Protective systems must be developed in order to insure the safety of a spacecraft

hull and its occupants, as well as the integrity of its exterior subsystems when encountering the

meteoroid and space debris environment.

The design of meteoroid/space debris protection systems depends largely on the ability to

predict the behavior of a variety of structural components under conditions of meteoroid or space

debris impact. Forty years ago it was suggested that "meteoroid bumpers" could be used to

minimize the damage caused by the highspeed impact of meteoroids [5]. Since then, numerous

experimental and analytical investigations have been performed to determine the resistance of multi-

sheet structures to hypervelocity impact [6-12]. In the majority of the experimental studies, the

trajectories of the high-speed projectiles were normal to the surface of the structures. However, it

has become increasingly evident that most meteoroid or space debris impacts will not occur normal

to the surface of a spacecraft. Unfortunately, information on oblique hypervelocity impact is rela-

tively scarce so that it is difficult to assess the severity of such impacts on a structure or subsystem

component. Studies of oblique impact that have been performed typically do not discuss the possi-

bility of damage to external systems due to ricochet debris particles [13-17].

OBJECTIVES

To increase the understanding of phenomena associated with oblique hypervelocity impact, a

program of research was developed at the Marshall Space Flight Center (MSFC). The objective of

this program was to generate and analyze oblique hypervelocity impact test data. The results of this

research program are presented in this report.



In the first section, a review of the experimental procedure used in the oblique hyper-

velocity impact testing of multi-sheet structures is presented. In the next section, impact test results

are reviewed qualitatively. In the following sections, the test data obtained are reduced and

analyzed. The analysis indicates that perforation and ricochet trajectories, as well as bumper hole

dimensions, can be correlated as functions of the impact parameters of the original projectile and

the geometrical properties of the projectile/multi-sheet specimen system. A preliminary investigation

of ricochet damage is performed to determine probable sizes and velocities of ricochet particles. In

the final section, conclusions are made based on the analysis of the data and visual inspection o1

the damaged specimens. Recommendations for future experimental and analytical investigations of

oblique hypervelocity impact are also presented.

EXPERIMENTAL PROCEDURE

The oblique hypervelocity impact testing of multi-sheet specimens was done at the Space

Debris Simulation Facility of the Materials and Processes Laboratory at MSFC. The facility con-

sists of a light gas gun with a 12.7 mm launch tube capable of launching 2.5 to 12.7 mm projec-

tiles of mass 4 to 300 mg at velocities of 2 to 8 km/sec. Projectile velocity measurements were

accomplished via pulsed x-ray, laser diode detectors, and a Hall photographic station. The Light

Gas Gun has three target tanks with interior volumes of 0.067, 0.53, and 28.5 m 3. The multi-sheet

specimen set-up is shown in Figure 1. The specimens and the conditions of impact were chosen to

simulate the conditions of space debris impact as closely as possible and still remain within the

realm of experimental feasibility.

In each test, a spherical projectile of diameter d and velocity V impacted the bumper plate

of thickness ts at an angle of obliquity 0. The projectile was shattered upon impact and created an

elliptical hole in the bumper plate. Some secondary projectile and bumper plate fragments were

Ts

V 0

I

PLATE

Otc

$
0 I

PRESSURE WALL

PLATE

Figure 1. Test configuration and definitions.
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sprayeduponthe pressurewall plate a distanceS awaywhile somefragmentsricochetedand struck
the ricochetwitnessplate (thicknesst,.). The angles0_and 02are "perforationangles"and denote
the trajectoriesof bumperand "in-line" projectilefragments,respectively.The angles% and o_,m
are "'ricochet angles" and denote the trajectory of the center of mass of the ricochet fragments and

the angle below which lie 99 percent of the ricochet fragments, respectively.

The projectiles used were solid l l00 aluminum spheres of diameter 4.75 mm, 6.35 mm,

and 7.95 ram. The bumper, pressure wall, and ricochet witness plates were made of 6061-T6,

2219-T87, and 2219-T6 aluminum, respectively. Their thicknesses were held constant at 1.5875

ram, 3. 175 ram, and 2.54 ram, respectively. The angles of obliquity ranged from 30 to 75 deg,

and the test impact velocities ranged from 5.0 to 7.5 km/sec. The bumper and pressure wall plates

were separated by a constant distance of 101.6 mm. A total of 22 test specimens were used to

study the penetration and ricochet phenomena.

EXPERIMENTAL RESULTS

The results of the test firings are presented in Table 1. The angles 0_ and 02 were obtained

by estimating the locations of the centers of mass of the bumper fragments and "in-line" projectile

fragments on the pressure wall plate. The angle ac was obtained by determining the vertical loca-

tion of the center of mass Of the ricochet debris based on the vertical distribution of the holes,

craters, etc., formed by the debris. The angle _99 was determined based on the height below which

lay 99 percent of the holes, craters, etc., formed by the ricochet debris. The minimum and max-

imum dimensions of the bumper plate hole, Dmi, and Dmax, respectively, were measured directly

from the bumper plate. Examples of damaged test specimens are presented in Figures 2 through 5.

Visual inspection of the test plates revealed several interesting features in each of three

obliquity regimes.

Low Obliquity Regime (O-deg < 0 < 45-deg)

For the impact tests in which the angle of obliquity was 30 deg, there was extensive dam-

age to the pressure wall plate but virtually no damage to the ricochet witness plate (Figs. 2b and

2c). The pressure wall plate damage strongly resembled the damage observed during normal

impact. Furthermore, the trajectory of the center of mass of the projectile fragments was very close

to the original impact trajectory. The hole in the bumper plate was elliptical, with an eccentricity

close to 1.0 (Fig. 2a).

Medium Obliquity Regime (45-deg < 0 < 60-deg)

The damaged pressure wall plates shown in Figures 3b and 4b are typical of test specimens

in which the trajectory obliquity of the original projectile was greater than 45 deg. Two distinct

areas of damage are discernible on the plates. The damage areas on the left contain craters and

holes that are nearly circular, which is characteristic of normal impact. The craters in the damage



Test V D

No. (km/sec) (mm)

EHIA 7.07 7.95

EHIB 6.96 7.95

EHIC 7.14 7.95

EHID 7.18 7.95

EHCP 7.58 4.75

231C 6.59 7.95

231D 7.26 7.95

137A 6.25 6.35

136B 7.30 6.35

136C 6.67 6.35

150A 7.08 6.35

157A 7.40 4.75

162A 6.49 4.75

162B 5.03 4.75

230E 6.62 6.35

135C 6.76 6.35

135D 6.93 6.35

206F 6.24 4.75

208E 6.48 6.35

209D 7.40 6.35

230C 5.16 6.35

230D 5.59 6.35

TABLE

0

(deg)

3O

45

6O

75

75

65

65

55

55

55

45

6O

3O

3O

45

3O

3O

45

65

65

45

45

I. IMPACT TEST DATA

Eccen-

D
min

(mm)

16.0

16.5

16.5

14.5

10.0

16.5

16.5

14.0

14.0

13.5

14.2

13.7

11 .9

9.9

14.2

13.2

13.2

11.7

13.0

14.5

12.4

13.5

Dmax

(mm)

17.0

20.0

24.9

36.1

18.0

31.0

25.9

18.3

20.1

17.0

18.0

17.3

14.0

11.7

17.5

14.2

14.2

13.5

21.0

19.6

16.o

16.3

tri- 01

cit_ (d_)

1.06 ****

1.22 10.9

1.51 9.6

2.49 4.7

1.82 4.7

1.87 8.7

1.57 10.2

1 31 10.7

1 44 10.1

1 26 11.0

1 26 10.0

1 26 9.3

I 18 ****

I 17 ****

1.25 10.0

1.08 ****

1.08 ****

1.16 8.0

1.61 9.0

1.36 ****

1.28 10.0

1.22 10.0

02

(d___)

24.8

38.1

50.0

26.9

20.9

55.7

49.7

43.5

41.8

38.2

39.0

36.0

21.0

27.0

32.0

24.0

27.0

31.0

47.0

34.0

37.0

(_C

(d____)

15.5

11.2

7.9

8.2

8.4

9.7

8.7

11.9

12.9

11.0

8.0

12.0

8.0

8.0

11.0

11.0

10.0

(_99

(d____)

29.2

27.6

27.1

25.6

20.4

23.0

23.3

28.3

28.4

24.0

22.0

25.0

21.0

20.0

27.0

26.0

25.0
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Figure 2a. 30-deg impact (EH1A), bumper plate.

Figure 2b. 30-deg impact (EH1A), pressure wall plate.
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Figure 2c. 30-deg impact (EH1A), ricochet witness plate.
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Figure 3a. 45-deg impact (EH1B), bumper plate.
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Figure 3b. 45-deg impact (EH1B), pressure wall plate.

iiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiii_i_i:_:_;i:_i_iiiiiiiiiiiiii_

Figure 3c. 45-deg impact (EH1B), ricochet witness plate.
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Figure 4a. 60-degimpact (EH1C), bumperplate.

Figure4b. 60-degimpact (EH1C), pressurewall plate.
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Figure 4c. 60-deg impact (EHIC), ricochet witness plate.

Figure 5a. 75-deg impact (EH1D), bumper plate.



Figure 5b. 75-degimpact (EH1D), pressurewall plate.
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Figure 5c. 75-degimpact (EH1D), ricochetwitnessplate.
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areas on the right are oblong, indicating that they were formed by oblique impacts. From these

considerations, it became possible to differentiate between pressure wall plate damage caused by

bumper plate fragments (circular craters and holes) and damage caused by projectile fragments

(oblong craters and holes). As the trajectory obliquity of the original projectile was increased, the

trajectories of the bumper plate and projectile fragments were observed to separate even more. The

trajectory of the bumper fragments began to approach the normal line between the bumper and

pressure wall plate while the trajectory of the projectile fragments, although no longer "in-line"

with the original trajectory, was still relatively close to it. The bumper plate hole was still elliptical

with a steadily increasing eccentricity (Figs. 3a and 4a).

High Obliquity Regime (60-deg < 0 < 75-deg)

With further increases in obliquity, an increasing amount of cratering and perforation was

observed on the ricochet witness plates. Up to a certain critical angle, the most serious damage

was still observed on the pressure wall plate, with the ricochet witness plate sustaining a relatively

low level of damage (Figs. 3b, 3c, 4b, and 4c). However, once the critical angle was exceeded,

the ricochet witness plate began to exhibit excessive cratering and perforation while the damage to

the pressure wall plate decreased dramatically (Figs. 5b and 5c). This critical angle is estimated to

have a value between 60 and 65 deg. At obliquities beyond this critical angle, the trajectory of the

shield fragments was virtually normal to the pressure wall plate and the trajectory of the projectile

fragments was severely departed from the original trajectory of the impacting projectile. The

bumper plate hole, although still elongated, ceased to be elliptical and developed a flattened end at

the end nearest to the ricochet witness plate (Fig. 5a). This indicates that a projectile incident at

the high angle of obliquity will tear, as well as shatter, the bumper plate upon impact.

BUMPER PLATE HOLE ANALYSIS

Elastodynamic theory predicts that as a hypervelocity projectile impacts a protective bumper

plate, the projectile and the portion of the plate surrounding the impact site will break up into

many fragments [18]. In order to be able to predict the damage capability of these fragments, it is

necessary to know the volume of debris that will be produced as a result of the impact. A good

estimate of the volume of bumper plate fragments can be obtained by calculating the area of the

hole created during the impact. Inspection of the test specimens revealed the bumper plate hole to

be elliptical with the elongation along the horizontal projection of the original projectile trajectory

(Figs. 2a, 3a, 4a, and 5a). The bumper plate hole area can, therefore, be approximated as the area

of an ellipse having major and minor axes equal to the maximum and minimum transverse hole

dimensions, respectively. The objective of this analysis was to obtain empirical equations that relate

these hole dimensions to impact parameters such as velocity, angle of obliquity, and projectile
diameter.

Inspection of the hole size data in Table 1 reveals several interesting features. First, the size

of the minimum dimension, Drain, appears to be relatively independent of the angle of obliquity.

The maximum dimension, Dmax, however, appears to be strongly dependent on trajectory obliquity.

11



Based on these observations, the first task in the analysis was to determine whether existing

equations that predict bumper hole diameters in normal high-speed impacts could be used to predict

either dimension of the holes formed in oblique impact. A survey of the literature revealed six

equations for hole diameter under normal impact. They are listed in the Appendix. The equations

developed by Maiden et al. [19] for normal impact were found to predict the minimum hole

dimension under oblique impact rather well (Table 2). However, no single equation was able to

accurately predict the maximum hole dimension, even for small trajectory obliquities. This is not

surprising considering the strong dependence of Dmax on the initial trajectory obliquity of the

projectile.

The second task undertaken was to independently derive empirical equations for the max-

imum and minimum hole dimensions as functions of the projectile diameter, impact velocity, and

angle of obliquity. Because the minimum hole dimension is relatively independent of trajectory

obliquity, an obliquity correction term was included only in the equation for the maximum hole

dimension. The equations were obtained through standard multiple linear regression techniques with

the following results:

Dmin/d = 2.794 (V/C) 0"962 (ts/d) °'895 + 1. 120 (1)

Dmax/d -- 4.575 (V/C) 0"450 (sin0) 13°3 (ts/d)0.672 q_ 1.470 (2)

where C is the speed of sound in the bumper plate material. The averages and standard deviations

of the prediction errors of the regression model are presented in Table 3, columns 1 and 2, respec-

tively. A measure of the accuracy of the equations, the correlation coefficient, is presented for each

equation in column 3. It can be seen that the equations are a fairly good fit to the hole dimension

data. It should be noted that this model is valid only for projectiles and plates made of the same
material.

TABLE 2. MINIMUM HOLE DIMENSION PREDICTIONS,

NORMAL IMPACT EQUATIONS

Average
Error
(%)

Standard
Deviation

(%)

Maiden Lundeberg Rolsten

et.al. Sawle Nysmith et. al. et.al.

(A-3) (A-4) (A-5) (A-6)(A-I) (A-2)

-4 -I

6 6

+14

17

-16 +7 -15

14
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TABLE 3. REGRESSION ANALYSIS OF BUMPER HOLE DIMENSION

DATA ERROR SUMMARY

%SAvg
o'(%) 100R 2

4.016 78.7D /d -0.001min

Dmax/d 0.000 8. 173 75.2

PERFORATION ANGLE ANALYSIS

The perforation angles 0_ and 02 were obtained by estimating the locations of the centers of

mass of the bumper fragment sprays and the "in-line" projectile fragment sprays on the pressure

wall plates of the impacted specimens. Empirical expressions for 0_ and 02 were obtained first as

functions of the bumper plate hole dimensions, and then as functions of projectile diameter, impact

velocity and trajectory obliquity. The equations were obtained through standard multiple linear

regression techniques with the following results:

As functions of bumper hole dimensions."

01/0 = 0.697 (V/C) 0"277 (Dmin/d) °'246 (Dmax/d) -j'463 (3)

0,/0 = 1.5 18 (V/C) °°34 (Drain/d) -°733 (Dmax/d) -°'1°5 (4)

As functions of original impact parameters."

01/0 = 0.085 (V/C) 0" 149 (sin0)-i .744 (ts/d)-O.233 (5)

0_/0 = 0.427 (V/C) -°3is (sin0) -°'255 (ts/d) -°436 (6)

The average and standard deviations of the prediction errors and the correlation coefficients

for each equation are presented in Table 4. Inspection of the correlation coefficients reveals that the

02 data did not regress as well as the 0_ data. This is in part due to the fact that the "in-line"

trajectory angle, 02, is not a single-valued function of trajectory obliquity. It can be seen in Figure

6 that 02 varies directly with 0 up to a critical value, 0or, between 60 and 65 deg, and then

decreases with further increases in 0. This reversal at 0 = 0or corresponds to a change in the

13



TABLE 4. REGRESSION ANALYSIS OF PENETRATION ANGLE

DATA, ERROR SUMMARY

E

O _1

4-)
Q) _lJ 4-a
c'r-- _

q-- c" _

c-
O

•,-- 4J _.
-I-J U _
U tO -I.J
c" r'_, _,j
_EE

4..- "_

c/_ I.,I.-. _'C5
'_ OQ.

02/0

01/0

02/0

%eAvg

0.236

0.269

0.312

0.226

7.209

7.543

8.282

6.879

100R 2

86.5

50.5

82.1

57.7

75

6O

A

W

o45

N

(D

3O

15 ¸

D:7.95 MM
I TEST

--EQ. 6

D: 4.75 MM IOOR
i TEST J

--EQ.. 6 /,,,_; m

1."

• I I' I I I

15 30 45 60 75

@ (DEG)

Figure 6. "In-line" projectile particle trajectory: test data compared with

regression equation predictions (V = 7 km/sec).
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location of the most severe damage from the pressure wall plate for 0 < 0or to the ricochet witness

plate for 0 > 0_.,. This multi-valued behavior of 02 and its effect on the behavior of 01 is the

subject of a current investigation. As such, equations (3) through (6) are applicable only for angles

of obliquity between 0 and 60 deg. It should again be noted that these equations are value only for

projectiles and plates of the same material. Furthermore, the data used in the regression analysis

itself may have an error of + 20 percent due to the difficulty in determining the exact locations on

the pressure wall plate of the centers of mass of the particle sprays.

RICOCHET ANGLE ANAYSIS

The ricochet angle o_c was obtained by determining the vertical location of the center of

mass of the ricochet debris based on the vertical distribution of the holes, craters, etc., formed by

the debris on the ricochet witness plate. The angle _99 was determined based on the height below

which lay 99 percent of the holes, craters, etc., formed by the ricochet debris. The holes and

craters were counted manually. Only those holes and craters 1.0 mm in diameter, or greater, were

included in the tabulation. Empirical expressions for oLc and oL99 were obtained first as functions of

the bumper plate hole dimensions, and then as functions of projectile diameter, impact velocity,

and original trajectory obliquity. The equations were obtained through standard multiple linear

regression techniques with the following results:

As functions of bumper hole dimensions:

ac/0 = 2. 196 (V/C) 1"079 (Drain/d) -0"288 (Dmax/d) -2.295 (7)

c_99/0 = 2.381 (V/C) 0'465 (Drain/d) °'185 (Dmax/d) -1.762 (8)

As functions of original impact parameters:

o_/0 = 0.030 (V/C) °sgs (sin0) -2892 (ts/d) °685 (9)

0t.99/0 = 0. 169 (V/C) 0"431 (sin0) -2072 (ts/d) -0291 (10)

Average prediction errors, standard deviations, and correlation coefficients are presented in

Table 5. It can be seen that although the average prediction errors are quite small, the spread of

the prediction errors is somewhat large for these equations. This is due to error in the regression

data. This error can be attributed to several factors. First, the ricochet witness plates were finite in

height. Some ricochet debris particles escaped detection and, therefore, were not included in the

final count. Second, ricochet debris holes and craters were frequently observed to cluster and

overlap, especially for large values of original trajectory obliquity. In these cases it was difficult to
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TABLE 5. REGRESSION ANALYSIS OF RICOCHET ANGLE DATA,
ERROR SUMMARY
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determine the exact number of holes or craters on the ricochet witness plate. The total number of

ricochet debris craters and holes is therefore seen somewhat dependent on the person performing

the analysis. Once again, these equations are valid only for projectiles and plates of the same

material. Furthermore, since no ricochet damage was observed for obliquities below 45 deg, these

equations are only valid for angles of obliquity greater than 45 deg.

RICOCHET PARTICLE SIZE AND VELOCITY ANALYSIS

The next step in the analysis of the oblique impact test specimens was to use crater and

hole damage on the ricochet witness plates to determine the sizes and velocities of ricochet debris

particles. The following observations were made during inspection of ricochet witness plate
damage:

l) Crater dimensions, such as diameter and depth, were found to increase with increasing

trajectory obliquity. Penetration depths were observed to decrease with increasing projectile diame-

ter and to increase with increasing original impact velocity.

2) Craters and holes found in ricochet witness plate were approximately circular in shape

with very little elongation. This was not very surprising since the _99 data in Table 1 indicates that

99 percent of the ricochet impacts occurred within angles of 30 deg with respect to the plane of
the bumper plate.

3) Hole diameters were found to increase with increasing trajectory obliquity, and with
increasing projectile diameter.
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4) The ricochet plates exhibited an excessive amount of dimpling, spalling, and perforation,

especially at larger angles of obliquity and higher impact velocities. This damage was concentrated

within an angle of 15 deg with respect to the plane of the bumper plate.

Based on observation (2), it was assumed that normal impact equations for creater depths in

thick plates and hole diameters in thin plates could be used in subsequent analyses. However,

based on observation (4), it was concluded that equations for penetration depths in thick plates

could not be used routinely in the analyses. These equations are, by definition, valid only when

there is no spalling or dimpling on the reverse side.

Examination of existing hole diameter equations (i.e., those in the Appendix) revealed a

strong coupling between particle size and velocity effects. That is, the same size crater can be

produced by a small particle traveling at a high speed or by a larger particle traveling at a slower

speed. This ambiquity makes exact calculation of ricochet particle sizes and speeds extremely
difficult.

However, it was possible to estimate the range of probable ricochet velocities based on an

assumed range of particle diameters. These velocities were calculated by using the normal impact

equations for hole diameters to solve for velocity in terms of all the other quantities. The lower

limit of the particle diameter range was set by the limit of applicability of the equations. In most

cases this value was equal to approximately i.25 mm. For the purposes of this investigation, the

upper limit on the particle size was assumed to be equal to one-half of the original projectile

diameter. Substitution of appropriate parameters and analysis of the results led to the conclusion

that ricochet velocities can exceed 10 km/sec for the smaller particles, but can be as low as 0.5

km/sec for the larger particles. Thus, there is a good probability that some of the larger ricochet

debris particles travel at low velocities. These large low-speed particles can be expected to inflict

more serious damage than the smaller ones traveling at higher velocities. In order to understand

this phenomenon more fully, further tests will have to be made in which little or no perforation of

the ricochet witness plate is allowed to occur. Under these conditions, ballistic limit equations, as

well as penetration depth equations, can be used to obtain better estimates of ricochet particle sizes
and velocities.

CONCLUSIONS AND RECOMMENDATIONS

Several conclusions can be drawn from the analysis of key components in the problem of

oblique hypervelocity impact on multi-sheet specimens. These conclusions can have a wide range

of consequences on the design of spacecraft meteoroid and space debris protection systems.

First, there exists a critical angle of obliquity. Projectiles with angles of obliquity less than

this critical angle produce significant damage to the interior pressure wall and little damage to the

ricochet witness plate. Projectiles with trajectory obliquities greater than the critical angle produce

little damage to the pressure wall plate, but produce ricochet debris that causes major damage to

the ricochet witness plate. This critical angle is estimated to have a value between 60 and 65 deg.

The existence of such an angle has serious consequences on the design and placement of external

subsystems such as instrumentation units on spacecraft that are developed for long-duration

missions in the meteoroid and space debris environment.
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Second, the damage potential of ricochet debris is difficult to extrapolate from existing dam-

age data due to coupling effects of ricochet particle size and velocity. Initial investigations reveal

that the velocities of small ricochet debris particles can exceed the original projectile impact

velocity while the velocities of larger particles can enter the dangerous low velocity regime. Dam-

age produced by the larger, slower particles was found to be more serious than that produced by

the smaller, faster projectiles.

Third, the most serious ricochet damage was found to occur within an angle of 15 deg with

respect to the plane of the bumper plate, regardless of the original impact angle. For original

trajectory obliquities of greater than 60 deg, the ricochet plate was completely perforated at the

bumper plate/ricochet witness plate interface. In general, ricochet damage was found to increase

with increases in original trajectory obliquity, original impact velocity, and the size of the original

incident projectile.

Fourth, additional experimental and analytical studies are needed in order to be able to more

accurately assess the extent of ricochet damage that can be expected to occur as the result of an

oblique hypervelocity impact. Several specifics of these future studies are outlined below.

The following recommendations are made for future investigations of oblique hypervelocity
impact phenomena.

l) It would be instructive to know at which angles the ricochet particles causing the largest

holes or deepest craters strike the witness plate. A preliminary investigation of these angles was

performed, but the results were inconclusive. Knowledge of these angles would enable a designer

to estimate critical exterior locations and avoid them in the placement of exterior subsystem

components.

2) Future experimental testing of oblique impact should be conducted with ricochet witness

plates sufficiently thick so that little or no spalling or perforation occurs. In this manner, virtually

all the crater damage produced by ricochet particles can be used with thick plate equations to es-
timate ricochet velocities and particle sizes.

3) A more precise value of the critical angle of obliquity should be made. In order to

accomplish this, a more sophisticated damage criterion is needed. It should also be determined

whether or not this critical angle is dependent on any material, geometric, or impact parameters.

4) Future experimental investigations should be conducted with projectiles _ind specimen

plates made from different materials. In this manner, the testing will better simulate on-orbit im-

pacts of meteoroids or pieces of space debris with spacecraft materials. Use of a wide variety of

materials, including composites, will also serve to improve and expand the applicability of the em-
pirical expressions of the current model.

5) More testing should be done at higher angles of obliquity to complement the large

:number of tests that have been performed at smaller angles (i.e., less than 45 deg). In light of the

existence of a critical obliquity angle near 60 deg, these tests are essential to be able to fully un-
derstand the oblique impact process.
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6) Extensiveanalytical investigationsof the phenomenainvolved in obliquehypervelocity
impactarestrongly recommended.Such investigationswould achieveseveralimportantgoals.First,
they would provideverification of the empiricalmodeldevelopedin this study. Second,they would
provide reliablemeansof predictingricochetdamagethroughaccurateestimatesof ricochetparticle
sizesand velocities. Third, they would yield damagecriteria that would be applicablein a variety
of impact situations.

In conclusion,a preliminary investigationof oblique hypervelocityimpacthasbeensuccess-
fully performed.A set of empirical equationsthat canbe usedto estimatethe extentof structural
damagedue to suchan impacthasbeenderived.Thereis, however,a needfor further combined
experimentaltestingand analyticalstudyof the mechanismsinvolved in obliquehypervelocityim-
pact phenomena.Suchinvestigationswould result in more reliabledesignmethodologiesfor
meteoroidand spacedebrisprotectionsystemsfor future long-durationspacecraft,suchas the
SpaceStation.
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APPENDIX

THIN PLATE HOLE DIAMETERS EQUATIONS FOR NORMAL

HYPERVELOCITY PROJECTILE IMPACT

Maiden, Gehring, and McMillan [ 19]:

D/d = 0.45 V (ts/d) °'666 + 0.90

D/d = 2.40 (V/C)(ts/d) 0'666 + 0.90

1.0 < D/d < 3.5

0.040 < tJD < 0.504

1.0 < V < 8.0 (km/sec)

Sawle [20]:

D/d = 3.2 [(Pp/Pt) (V/C)] 0"222 (ts/d) 0"666 + 1.0

0.88 < D/d < 3.7

0.083 < tJd < 0.333

11.0 < V < 17.0 (km/sec)

Nysmith [21 ]:

[)/d = 1.32 (ts/d) °'45 V °'5°

1.5 < D/d < 3.8

0.25 < ts/d < 1.00

3.2 < V < 8.8 (km/sec)
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Lundeberg, Stem, and Bristow [22]:

D/d = 3.4 (ts/d) 0"333 (V/C) 0"333 (1.0-0.0308 Pt/Pp)

1.0 < D/d < 4.3

0.5 < tJd < 125

4.5 < V < 8.2 (km/sec)

Rolsten, Wellnitz, and Hunt [23]:

D/d = [2.0 + (pt/Pp)050] 0"50

1.4 < D/d < 2.2

0.040 < ts/d < 0.748

2.3 < V < 4.9 (km/sec)

Notation

D = hole diameter

d = projectile diameter

V = impact velocity

C = longitudinal wave speed in bumper plate material

t_ = bumper plate thickness

pp = projectile material density

9t = bumper plate material density.
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