2,986 research outputs found

    Tounvre : village Sénoufo

    Get PDF

    Adaptation of the Bacterial Membrane to Changing Environments Using Aminoacylated Phospholipids

    Get PDF
    Fine‐tuning of the biophysical properties of biological membranes is essential for adaptation of cells to changing environments. For instance, to lower the negative charge of the lipid bilayer, certain bacteria add lysine to phosphatidylglycerol (PG) converting the net negative charge of PG (−1) to a net positive charge in Lys‐PG (+1). Reducing the net negative charge of the bacterial cell wall is a common strategy used by bacteria to resist cationic antimicrobial peptides (CAMPs) secreted by other microbes or produced by the innate immune system of a host organism. The article by Klein et al. in the current issue of Molecular Microbiology reports a new modification of the bacterial membrane, addition of alanine to PG, in Pseudomonas aeruginosa. In spite of the neutral charge of Ala‐PG, this modified lipid was found to be linked to several resistance phenotypes in P. aeruginosa. For instance, Ala‐PG increases resistance to two positively charged antibacterial agents, a β‐lactam and high concentrations of lactate. These findings shed light on the mechanisms by which bacteria fine‐tune the properties of their cell membranes by adding various amino acids on the polar head group of phospholipids

    Jean-Baptiste Brissaud, un juriste positiviste entre sociologie et anthropologie

    Get PDF

    Loss of Editing Activity During the Evolution of Mitochondrial Phenylalanyl-tRNA Synthetase

    Get PDF
    Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNAPhe. Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNAPhe, an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol

    Divergence in Non-Cognate Amino Acid Recognition Between Class I and Class II Lysyl-tRNA Synthetases

    Get PDF
    Lysine insertion during coded protein synthesis requires lysyl-tRNALys, which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, theKi values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only γ-aminobutyric acid showed a significantly higherKi for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against γ-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target

    Characterization of Two Seryl-tRNA Synthetases in Albomycin-producing Streptomyces sp. ATCC 700974

    Get PDF
    The Trojan horse antibiotic albomycin, produced by Streptomyces sp. strain ATCC 700974, contains a thioribosyl nucleoside moiety linked to a hydroxamate siderophore through a serine residue. The seryl nucleoside structure (SB-217452) is a potent inhibitor of seryl-tRNA synthetase (SerRS) in the pathogenic bacterium Staphylococcus aureus, with a 50% inhibitory concentration (IC50) of ∼8 nM. In the albomycin-producing Streptomyces sp., a bacterial SerRS homolog (Alb10) was found to be encoded in a biosynthetic gene cluster in addition to another serRS gene (serS1) at a different genetic locus. Alb10, named SerRS2 herein, is significantly divergent from SerRS1, which shows high homology to the housekeeping SerRS found in other Streptomyces species. We genetically and biochemically characterized the two genes and the proteins encoded. Both genes were able to complement a temperature-sensitive serS mutant of Escherichia coli and allowed growth at a nonpermissive temperature. serS2 was shown to confer albomycin resistance, with specific amino acid residues in the motif 2 signature sequences of SerRS2 playing key roles. SerRS1 and SerRS2 are comparably efficient in vitro, but the Km of serine for SerRS2 measured during tRNA aminoacylation is more than 20-fold higher than that for SerRS1. SB-217452 was also enzymatically generated and purified by two-step chromatography. Its IC50 against SerRS1 was estimated to be 10-fold lower than that against SerRS2. In contrast, both SerRSs displayed comparable inhibition kinetics for serine hydroxamate, indicating that SerRS2 was specifically resistant to SB-217452. These data suggest that mining Streptomyces genomes for duplicated aminoacyl-tRNA synthetase genes could provide a novel approach for the identification of natural products targeting aminoacyl-tRNA synthetases

    Structural elements defining elongation factor Tu mediated suppression of codon ambiguity

    Get PDF
    In most prokaryotes Asn-tRNAAsn and Gln-tRNAGln are formed by amidation of aspartate and glutamate mischarged onto tRNAAsn and tRNAGln, respectively. Coexistence in the organism of mischarged Asp-tRNAAsn and Glu-tRNAGln and the homologous Asn-tRNAAsn and Gln-tRNAGln does not, however, lead to erroneous incorporation of Asp and Glu into proteins, since EF-Tu discriminates the misacylated tRNAs from the correctly charged ones. This property contrasts with the canonical function of EF-Tu, which is to non-specifically bind the homologous aa-tRNAs, as well as heterologous species formed in vitro by aminoacylation of non-cognate tRNAs. In Thermus thermophilus that forms the Asp-tRNAAsn intermediate by the indirect pathway of tRNA asparaginylation, EF-Tu must discriminate the mischarged aminoacyl-tRNAs (aa-tRNA). We show that two base pairs in the tRNA T-arm and a single residue in the amino acid binding pocket of EF-Tu promote discrimination of Asp-tRNAAsn from Asn-tRNAAsn and Asp-tRNAAsp by the protein. Our analysis suggests that these structural elements might also contribute to rejection of other mischarged aa-tRNAs formed in vivo that are not involved in peptide elongation. Additionally, these structural features might be involved in maintaining a delicate balance of weak and strong binding affinities between EF-Tu and the amino acid and tRNA moieties of other elongator aa-tRNAs

    A review of sexual dimorphism of eye size in Colubroidea snakes

    Get PDF
    Eye size is interesting in snakes because in most species body length differs between the sexes, while the eye’s performance depends on its absolute size. So, does the smaller sex see less well? We hypothesized that eye sexual mensural dimorphism (SMD) would be smaller than Body SMD. We found among 26 snake populations that body length SMD was female biased in 47.6% and male biased in 38.1% of samples. Often the larger sex’s head was further enlarged but the SMD of absolute eye size was mitigated or annulled by the smaller sex’s eye being enlarged within the head, and the head enlarged relative to the body. Overall generally the SMD of eye size was smaller than body SMD. This accords with a hypothesis that eye size affects the evolution of head size and its SMD, both reflecting and emphasizing that absolute eye size is functionally important. Although Colubridae exceed Viperidae in length, Viperidae have larger eyes in absolute terms. In Colubridae the females have larger eyes and in Viperidae the males have larger eyes. Additionally we examine to what extent SMD in different characters is correlated, and briefly review other aspects of SMD, including some aspects of Rensch’s rule
    corecore