498 research outputs found

    Fetal XCMR: a numerical phantom for fetal cardiovascular magnetic resonance imaging.

    Get PDF
    Validating new techniques for fetal cardiovascular magnetic resonance (CMR) is challenging due to random fetal movement that precludes repeat measurements. Consequently, fetal CMR development has been largely performed using physical phantoms or postnatal volunteers. In this work, we present an open-source simulation designed to aid in the development and validation of new approaches for fetal CMR. Our approach, fetal extended Cardiac-Torso cardiovascular magnetic resonance imaging (Fetal XCMR), builds on established methods for simulating CMR acquisitions but is tailored toward the dynamic physiology of the fetal heart and body. We present comparisons between the Fetal XCMR phantom and data acquired in utero, resulting in image quality, anatomy, tissue signals and contrast. Existing extended Cardiac-Torso models are modified to create maternal and fetal anatomy, combined according to simulated motion, mapped to CMR contrast, and converted to CMR data. To provide a comparison between the proposed simulation and experimental fetal CMR images acquired in utero, images from a typical scan of a pregnant woman are included and simulated acquisitions were generated using matching CMR parameters, motion and noise levels. Three reconstruction (static, real-time, and CINE), and two motion estimation methods (translational motion, fetal heart rate) from data acquired in transverse, sagittal, coronal, and short-axis planes of the fetal heart were performed to compare to in utero acquisitions and demonstrate feasibility of the proposed simulation framework. Overall, CMR contrast, morphologies, and relative proportions of the maternal and fetal anatomy are well represented by the Fetal XCMR images when comparing the simulation to static images acquired in utero. Additionally, visualization of maternal respiratory and fetal cardiac motion is comparable between Fetal XCMR and in utero real-time images. Finally, high quality CINE image reconstructions provide excellent delineation of fetal cardiac anatomy and temporal dynamics for both data types. The fetal CMR phantom provides a new method for evaluating fetal CMR acquisition and reconstruction methods by simulating the underlying anatomy and physiology. As the field of fetal CMR continues to grow, new methods will become available and require careful validation. The fetal CMR phantom is therefore a powerful and convenient tool in the continued development of fetal cardiac imaging

    Motion-resolved fat-fraction mapping with whole-heart free-running multiecho GRE and pilot tone.

    Get PDF
    To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. (N <sub>TE</sub> = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R <sub>2</sub> *, and B <sub>0</sub> maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using N <sub>TE</sub> = 4 and N <sub>TE</sub> = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with N <sub>TE</sub> = 4 and N <sub>TE</sub> = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with N <sub>TE</sub> = 8 echoes in 6:15 min

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    Circumventing antivector immunity: potential use of nonhuman adenoviral vectors

    Get PDF
    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles

    Conditions for spontaneous homogenization of the Universe

    Full text link
    The present-day Universe appears to be homogeneous on very large scales. Yet when the casual structure of the early Universe is considered, it becomes apparent that the early Universe must have been highly inhomogeneous. The current paradigm attempts to answer this problem by postulating the inflation mechanism However, inflation in order to start requires a homogeneous patch of at least the horizon size. This paper examines if dynamical processes of the early Universe could lead to homogenization. In the past similar studies seem to imply that the set of initial conditions that leads to homogenization is of measure zero. This essay proves contrary: a set of initial conditions for spontaneous homogenization of cosmological models can form a set of non-zero measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay competitio

    Quantifying cerebral contributions to pain beyond nociception

    Get PDF
    Action Contro

    General Stability Analysis of Synchronized Dynamics in Coupled Systems

    Full text link
    We consider the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical systems (maps or ordinary differential equations). We develop a general approach, based on the master stability function and Gershgorin disc theory, to yield constraints on the coupling strengths to ensure the stability of synchronized dynamics. Systems with specific coupling schemes are used as examples to illustrate our general method.Comment: 8 pages, 1 figur

    Natively fat-suppressed 5D whole-heart MRI with a radial free-running fast-interrupted steady-state (FISS) sequence at 1.5T and 3T.

    Get PDF
    To implement, optimize, and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5 tesla (T) and 3T. FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (number of readouts [NR] per FISS module and TR) for effective fat suppression. Subsequently, free-running FISS data were collected in 10 healthy volunteers and images were reconstructed with compressed sensing. All acquisitions were compared with a continuous balanced steady-state free precession version of the same sequence, and both fat suppression and scan times were analyzed. Simulations demonstrate a variable width and location of suppression bands in FISS that were dependent on TR and NR. For a fat suppression bandwidth of 100 Hz and NR ≤ 8, simulations demonstrated that a TR between 2.2 ms and 3.0 ms is required at 1.5T, whereas a range of 3.0 ms to 3.5 ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with balanced steady-state free precession (P < 0.05) at both field strengths. After protocol optimization, high-resolution (1.1 mm <sup>3</sup> ) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to balanced steady-state free precession. An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur
    corecore