206 research outputs found

    Revisiting Friendship Networks

    Get PDF
    We extend the model of friendship networks developed by Brueckner (2006) in two ways. First, we extend the level of indirect benefits by incorporating benefits from up to three links and explore its implication for the socially optimal and individual effort levels. Next, we generalize the magnetic agent problem by allowing for more than 3 players by restricting ourselves to regular networks that include payoffs from the magnetic agent.Social networks, Endogenous effort, Magnetic agent

    Revisiting Friendship Networks

    Get PDF
    We extend the model of friendship networks developed by Brueck- ner (2006) in two ways. First, we extend the level of indirect benefits by incorporating benefits from up to three links and explore its impli- cation for the socially optimal and individual e¤ort levels. Next, we generalize the magnetic agent problem by allowing for more than 3 players by restricting ourselves to regular networks that include pay- o¤s from the magnetic agent.

    DeepMasterPrints: Generating MasterPrints for Dictionary Attacks via Latent Variable Evolution

    Full text link
    Recent research has demonstrated the vulnerability of fingerprint recognition systems to dictionary attacks based on MasterPrints. MasterPrints are real or synthetic fingerprints that can fortuitously match with a large number of fingerprints thereby undermining the security afforded by fingerprint systems. Previous work by Roy et al. generated synthetic MasterPrints at the feature-level. In this work we generate complete image-level MasterPrints known as DeepMasterPrints, whose attack accuracy is found to be much superior than that of previous methods. The proposed method, referred to as Latent Variable Evolution, is based on training a Generative Adversarial Network on a set of real fingerprint images. Stochastic search in the form of the Covariance Matrix Adaptation Evolution Strategy is then used to search for latent input variables to the generator network that can maximize the number of impostor matches as assessed by a fingerprint recognizer. Experiments convey the efficacy of the proposed method in generating DeepMasterPrints. The underlying method is likely to have broad applications in fingerprint security as well as fingerprint synthesis.Comment: 8 pages; added new verification systems and diagrams. Accepted to conference Biometrics: Theory, Applications, and Systems 201

    Universality in Distribution of Monogamy Scores for Random Multiqubit Pure States

    Full text link
    Monogamy of quantum correlations provides a way to study restrictions on their sharability in multiparty systems. We find the critical exponent of these measures, above which randomly generated multiparty pure states satisfy the usual monogamy relation, and show that the critical power decreases with the increase in the number of parties. For three-qubit pure states, we detect that W-class states are more prone to being nonmonogamous as compared to the GHZ-class states. We also observe a different criticality in monogamy power up to which random pure states remain nonmonogamous. We prove that the "average monogamy" score asymptotically approaches its maximal value on increasing the number of parties. Analyzing the monogamy scores of random three-, four-, five- and six-qubit pure states, we also report that almost all random pure six-qubit states possess maximal monogamy score, which we confirm by evaluating statistical quantities like mean, variance and skewness of the distributions. In particular, with the variation of number of qubits, means of the distributions of monogamy scores for random pure states approach to unity -- which is the algebraic maximum -- thereby conforming to the known results of random states having maximal multipartite entanglement in terms of geometric measures.Comment: 12 pages, 7 figure

    Deterministic Quantum Dense Coding Networks

    Full text link
    We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state -- an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger-Horne-Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.Comment: 11 pages, 2 figures, close to published versio
    corecore