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Abstract 

We extend the model of friendship networks developed by Brueckner (2006) in two ways. First, we extend the level 
of indirect benefits by incorporating benefits from up to three links and explore its implication for the socially optimal 
and individual effort levels. Next, we generalize the magnetic agent problem by allowing for more than 3 players by 
restricting ourselves to regular networks that include payoffs from the magnetic agent.
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1 Introduction

Recent research in economics has shown that networks play an important role in determining the
outcomes of social and economic relationships. These networks result from the interaction among
economic agents. Our paper revisits a speci�c type of social network called friendship networks
introduced in an interesting paper by Brueckner (2006). We extend the original paper by incor-
porating bene�ts from up to three links and examine the signi�cance of these increased indirect
bene�ts. We also add to Brueckner's paper by generalizing his magnetic agent model using a regular
network structure. Thus the �rst extension focuses on the role of indirect bene�ts while the second
extension generalizes the asymmetric bene�ts case for a fairly large class of networks.
There are two well-known approaches in economics that analyze network formation. The �rst of

these was developed by Jackson and Wolinsky (1996) and involves mutual consent for the formation
of networks. The equilibrium concept followed by this approach is called pairwise stability and can
be thought of as a link based non-strategic concept. The second approach due to Bala and Goyal
(2000a) uses the notion of Nash equilibrium. Note that the costs and bene�ts of links in the network
in both these approaches are usually exogenously given.
Brueckner's model of friendship networks di�ers from the rest of the literature in the sense

that the bene�ts from links depend on the e�ort exerted to create them, and therefore are not
given exogenously. Consequently, to establish a friendship two individuals have to be acquainted
beforehand and must exert e�ort to form this link. The model captures realism: after the two agents
put in their e�ort, the success of every link is still a probabilistic event, where the probability depends
on the e�ort put in by both individuals as well as a random error term. Thus link formation is
stochastic. Also, link success is an independent event, i.e., the probability of link success between
Alice and Bob is independent of the probability of link success between Bob and Carol. 1

Analyzing the fully symmetric case where every player is acquainted with every other player,
and all links yield equal bene�ts, Brueckner �nds that if the equilibrium in the symmetric case is
stable and unique, then the common equilibrium e�ort level is less than the socially optimal level.
In this model agents obtain bene�ts from up to two links only (or level-one indirect bene�ts). He
also examines the e�ect of asymmetry by including a \magnetic agent" who o�ers greater friendship
bene�ts than the other non-magnetic individuals. By considering a model with only three agents he
is able to show that when e�ort levels are substitutes, the nonmagnetic agents will exert more e�ort
to form a friendship with magnetic agent than with the other (nonmagnetic) agents. The magnetic
agent on the other hand will incur minimum e�ort to form a friendship with the nonmagnetic agents.
We extend Brueckner's basic model by considering the bene�ts from up to three links, i.e.,

bene�ts from friends of friends of friends (or level-two indirect bene�ts). Thus, in our model if there
are three links we can say that an individual i gets bene�t from being direct friend of j; and gets
smaller bene�t from indirect friendship with k who is a direct friend of j. He also gets bene�ts from
l who is direct friend of k. The bene�t i gets from l however is smaller than the bene�t he gets
from j and k. This framework allows us to investigate more generally the role of indirect bene�ts in
the formation of friendship networks. Next, we generalize Brueckner's magnetic agent model (with
only 3 individuals) by allowing for more than three players while restricting ourselves to regular
networks that include payo�s from the magnetic agent.

1This is similar to the probabilistic Nash networks formulation of Bala and Goyal (2000b) and Haller and Sarangi
(2005). A recent paper by Bloch and Dutta (2008) also has stochastic links whose strength is based on the level of
e�ort exerted by the parties involved in the link. However, the set up and the issues pursued there di�er substantially
from Brueckner's paper.
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The remainder of this paper is organized as follows. In Section 2 we set up the model and revisit
the two main results of the original paper. First, we consider the case with bene�ts from three links
followed by the generalization of the magnetic agent problem. Section 3 o�ers a summary of our
results.

2 The Model

In this section we begin by developing the basic model. Unless explicitly stated otherwise, we follow
the notation used in Brueckner (2006).

2.1 Model Setup

Denote the set of players in the game by N = f1; 2; : : : ; ng. For a generic player i 2 N; we use a(i)
to denote the acquaintance set of player i: So a(i) = fj : i and j are acquaintedg: Let eij denote
the e�ort exerted by agent i to form a friendship with agent j 2 a(i): The probability that an ij
friendship is formed depends on the e�ort exerted both by i and j, and is denoted by P (eij; eji)
where P (:; :) 2 [0; 1): The friendship between i and j also depends on the realization of a random
term. In other words, a friendship between i and j is established when F (eij; eji) + " > 0, where
F is an increasing function and " is an error term that is identically distributed across all potential
ij pairs. We assume that " is independent across pairs. Then the probability of a successful
friendship is Prob[" > �F (eij; eji)] � P (eij; eji). We assume that this probabilistic friendship
success function is symmetric, i.e., P (eij; eji) = P (eji; eij). Following Brueckner we also assume
that the P function is increasing in both arguments with negative second partial derivatives. Hence
@2P=@e2ij = @

2P=@e2ji < 0.
E�ort in this model is costly. For player i the e�ort required to establish an ij friendship costs

C(eij) where C is strictly convex increasing function with C(0) = 0. Hence the total cost incurred
by player i for all her friendship links is given by

P
j2a(i)C(eij). Although a number of di�erent

cost speci�cations are possible, here we adopt the one used by Brueckner (2006).
We now de�ne the bene�ts from friendships in the model. Let uij > 0 and vik > 0 denote player

i's bene�ts from a direct friend j and an indirect friend k respectively (obviously here j and k are
direct friends). In our model we also take into account agent l who is a direct friend of agent k.
Player i gets bene�ts equal to wil > 0 from the sequence of links involving j; k and l. As before
we assume that bene�ts decrease with distance giving us the following ranking: uij > vik > wil.
Finally, friendship bene�ts from di�erent links are assumed to be cumulative.

2.2 Extending indirect bene�ts

We begin by computing the expected bene�ts of individual i from the friendship network

Bi =
P

j2a(i)
P (eij; eji)

266666664

8>><>>:uij +
P

k2a(j)
k 6=i

vikP (ejk; ekj)

9>>=>>;+P
k2a(j)
k 6=i

P (ejk; ekj)
P

l2a(k)
l 6=i6=j

wilP (ekl; elk)

377777775 : (1)
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In the above expression, the last term which captures the indirect bene�ts from the third player l is
not present in Brueckner's formulation. Following the original paper we assume symmetry: friend-
ship bene�ts are uniform across individuals and each person is initially acquainted with everyone
else. This allows us to set uij = u, vij = v, wij = w and eij = e3 for all i; j 2 N �N . The subscript
3 in e3 denotes the fact that we are dealing with the model of three links. Similarly let e2 be the
e�ort level when bene�ts are obtained from only two links. To obtain the optimal e�ort level we
use the �rst order condition for the net expected bene�t function. Using symmetry we get:

P
0
(e3; e3)

h
u+ (n� 2)vP + (n� 2)(n� 3)wP 2

i
= C

0
(e3) (2)

where P
0
(e3; e3) denotes the partial derivative with respect to the �rst argument and the multi-

plicative probability terms follow from the independence of the error term ".

Next, we compute the socially optimal e�ort level. First let W =
nP
i=1
Bi which can be written as

W =
P
i2N

266666664
P

j2a(i)
P (eij; eji)

8>>>>>>><>>>>>>>:

(uij + uji) +
P

k2a(j)
k 6=i

(vik + vki)P (ejk; ekj)+

P
k2a(j)
k 6=i

P (ejk; ekj)

0BB@ P
l2a(k)
l 6=i6=j

(wil + wli)P (ekl; elk)

1CCA

9>>>>>>>=>>>>>>>;

377777775 : (3)

The social welfare function is just the sum of net (expected) individual bene�ts i.e.,

W = W �
nX
i=1

X
j2a(i)

C(eij). (4)

Observe that in this function the planner takes into account the fact that greater e�ort by i raises
expected direct friendship bene�ts for both i and j. Also note that the planner takes the externality
from the indirect bene�ts of upto two levels into account. Invoking symmetry we can write the �rst
order condition ( @W

@eij
= 0) as follows:

P
0
(e�3; e

�
3)
h
2u+ 2(n� 2)vP + 2(n� 2)(n� 3)wP 2

i
+ (5)

P
0
(e�3; e

�
3)
h
2(n� 2)vP + 4(n� 2)(n� 3)wP 2

i
= C

0
(e�3)

which simpli�es to2

2P
0
(e�3; e

�
3)
h
u+ 2(n� 2)vP + 3(n� 2)(n� 3)wP 2

i
= C

0
(e�3): (6)

We can now state our �rst proposition.

Proposition 1: In the extended model, if the equilibrium in the symmetric case is unique
and stable, then the common equilibrium e�ort level is smaller than the socially optimal level, with
e3 < e

�
3. Moreover e2 < e3 and e

�
2 < e

�
3.

Proof: See Appendix.

2Following Brueckner (2006) we assume that the Hessian is negative de�nite to ensure that the social welfare
function can be maximized.
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The intuition behind this result can be easily explained. Proposition 1 says that agents do not
expend enough individual e�ort in forming friendship links. This is due to the presence of two
di�erent externalities in the model that are not taken into account by players when choosing their
own e�ort level. The �rst externality stems from the fact that while forming links each individual
ignores the reciprocal bene�ts enjoyed by those who become her direct and indirect friends. In other
words, even if there were no indirect bene�ts, it is easy to see that e1 < e

�
1; that is the individual

e�ort choice is lower than the socially optimal one. The second externality arises due to the fact
that each player neglects her role in facilitating indirect relationships between other people that
make use of her own direct links. Hence as expected we �nd e3 < e

�
3: This is similar to Brueckner's

�nding that e2 < e�2. Next, it is also true that e2 < e3 and e
�
2 < e�3. Due to the presence of the

level-two indirect bene�ts agents spend greater e�ort than in case of level-one indirect bene�ts. This
is true both for the individual as well as the social planner. When agents know they have access
to more links, and thus more bene�ts than in the level-one indirect bene�ts case, they spend more
e�ort to derive maximum bene�ts. Similarly, although the social planner takes the externalities
into account, the additional bene�t from the third link for all players also leads to her choosing a
higher e�ort level than in the model with level-one indirect bene�ts. Finally, we believe that this
phenomenon of higher e�ort levels for both the individual and the social planner will persist as we
take higher levels of indirect bene�ts into account.

2.3 The magnetic agent problem for m-regular networks

We now solve the magnetic agent problem by allowing for more than three agents. The magnetic
agent re
ects asymmetry in bene�ts, i.e., it pays more to be connected directly or indirectly to the
magnetic agent. Without loss of generality let agent 1 be the magnetic agent and let x = 2; 3; : : : ; n
denote all the other (non-magnetic) agents. The direct bene�t of linking to a magnetic agent is given
by u1 while the direct bene�t of linking to a non-magnetic agent is given by ux where u1 > ux > 0.
Similarly, indirect bene�t from the magnetic agent is worth v1 while from the others it is worth
vx with v1 > vx > 0. In order to keep the analysis tractable, we now assume that wil = 0 for all
ordered pairs il 2 N � N . Hence in this part of the paper, agents derive bene�ts from only up
to two links as in the original Brueckner (2006) paper.3 Here, we restrict our analysis to regular
networks. A network is said to be regular if every agents have the same number of neighbors. In
an m-regular network every player has m direct neighbors, where m 2 [2; (n � 1)].4 Note that
m = (n� 1) implies the complete network. Further, a network is said to be connected if there exists
a path between any two agents i and j in the network.
In this model e�orts required to establish a friendship link are assumed to be substitutes. Hence

the P function is written as P (eij + eji) with P
0 > 0 and P 00 < 0. Next, we assume that every

agent has access to a magnetic agent. We denote by ex1 the e�ort exerted by the other agents to
link to agent 1, and by e1x the e�ort exerted by agent 1 to link to the others. The e�ort level of
nonmagnetic agents when linking to one another is given by exx: Also, from the symmetry between
all agents we set ee = e1x + ex1, be = 2exx.
The �rst order conditions are given by:

P
0
(ee) [ux + (m� 1)P (be)vx] = C 0

(e1x): (7)

3We do not consider the knows-everyone agent formulation of Brueckner because the results in this case depend
on the exact network architecture and therefore has to be dealt with case by case.

4In this paper we have ruled out 1�regular networks since these will not allow for indirect bene�ts.
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P
0
(ee) [u1 + (m� 1)P (ee)vx] = C 0

(ex1): (8)

P
0
(be) [ux + P (ee)v1 + (m� 2)P (be)vx] = C 0

(exx): (9)

The �rst equation shows the behavior of agent 1 when forming a link with the others. The
second equation shows agent x forming a link with agent 1, whose (m � 1) links are with other
agents. Equation (9) is for agent x connecting to another non-magnetic agent.
We now state our next proposition.

Proposition 2: Consider the set of m-regular networks where every agent has access to bene�ts
from the magnetic agent.5 Let ee > be. Then non-magnetic agents expend more e�ort attempting to
link with agent 1 than she expends attempting to link with them. The non-magnetic agents expend
an intermediate amount of e�ort in linking with one another. More precisely, ex1 > exx � e1x:
Proof: See Appendix.

Note there are some important di�erences between our framework and Brueckner's. Equations
(7) and (8) above are very similar to equations (8) and (9) in his paper. Given that we assume a
regular network with n players, Brueckner's equation (10) is replaced by equation (9) in our paper.
Observe that equation (9) includes both P (ee) and P (be): In our model, this makes comparison
between equations (8) and (9) di�cult without additional assumptions.6 Hence we assume thatee > be: Although it is a somewhat strong assumption, it allows us to provide general results for a
large class of networks. Additionally, unlike Brueckner we do not need to assume u1�ux > v1� vx:
Finally, note that the above proposition holds for the complete network since it is the (n�1)-regular
network.
The intuition behind this result is also quite simple. Agent 1 provides both higher direct and

indirect bene�ts. Hence non-magnetic agents have a higher incentive to link with agent 1 than with
one another. On the other hand, agent 1 does not gain as much by linking to the others as they
stand to gain from her. Hence her incentive to form friendship links is the least. Brueckner argues
that it is di�cult to generalize this result since adding more agents (n > 3) dilutes the importance
of the magnetic agent. The precise network structure would determine whether the magnetic agent
was important enough or not. We are able to get around this problem due to two reasons. By
assuming ee > be we are able to maintain the importance of the magnetic agent independent of the
network structure. Also by focusing on regular networks, we are able to keep track of the exact
amount of direct and indirect bene�ts of magnetic and non magnetic agents, independent of the
size of the player set.

3 Conclusion

In this paper we extend the basic model of Brueckner (2006) by incorporating bene�ts from three
links. Not surprisingly, we �nd that the individual optimal e�ort level is lower than the social
optimum. What is more interesting is the fact that the individual's optimal e�ort choice with
bene�ts from three links exceeds the individual's e�ort choice with bene�ts from two links. The
same is true for the socially optimal e�ort level. Next, we are also able to generalize the magnetic
agent setup of Brueckner (2006) for m-regular networks that always include bene�ts from the
magnetic agent.

5For this proof it is not enough to consider connected m-regular networks. It is important that the non-magnetic
agents have access to bene�ts from the magnetic agent.

6Note that in Brueckner's paper the analogous equations involve only a P (ee) term.
5



4 Appendix

1. Proof of Proposition 1: We can rewrite the �rst order condition for the individual's problem
as follows:

�3(e3) =
h
P

0
(e3; e3)fu+ (n� 2)vP + (n� 2)(n� 3)wP 2g � C

0
(e3)

i
= 0:

where for local stability we assume that �
0
(e) < 0. Similarly we can rewrite the �rst order condition

for the planner's problem as follows:

�3(e
�
3) = 2P

0
(e�3; e

�
3)
h
u+ 2(n� 2)vP + 3(n� 2)(n� 3)wP 2

i
� C 0

(e�3) = 0:

Comparing these two we can see that �3(e
�
3) > �3(e

�
3). However using the fact that �3(e

�
3) = 0, we

can conclude that �3(e
�
3) < 0. Next with the stability of the equilibrium implying �

0
(e) < 0 and

uniqueness implying that �(e) has a single solution, it follows from �3(e
�
3) < 0 that the solution

must satisfy e3 < e
�
3. This completes the proof of the �rst part. The �rst order condition for the

two link bene�ts case is given by

P
0
(e2; e2) [u+ (n� 2)vP ] = C

0
(e2)

Rewriting this we get

�2(e2) =
h
P

0
(e2; e2)fu+ (n� 2)vPg � C

0
(e2)

i
= 0:

Comparing �3(e) with �2(e) we �nd �3(e) > �2(e) for all values of e. In particular at e = e2,
�3(e2) > �2(e2) = 0. Therefore �3(e2) > 0: But �3(e3) = 0: The stability and uniqueness of the
equilibrium yields e3 > e2: This proves the second part of our proposition. The �rst order condition
for the social planner's problem for the two link bene�ts case is given below:

�2(e
�
2) =

h
2P

0
(e�2; e

�
2)fu+ 2(n� 2)vPg � C

0
(e�2)

i
= 0:

Evaluating �3(e) at e = e
�
2 and comparing with �2(e

�
2); we get that �3(e

�
2) > �2(e

�
2) = 0: If �

0 < 0;
and since �3(e

�
3) = 0, the stability of the equilibrium implies e�3 > e

�
2: To sum up, we have e3 < e

�
3;

e2 < e3 and e
�
2 < e

�
3:

2. Proof of Proposition 2: We will �rst show that ex1 > e1x. Suppose not. Then e1x � ex1
from which it follows that C

0
(e1x) � C

0
(ex1). But this implies that

P
0
(ee) [ux + (m� 1)P (be)vx] � P 0

(ee) [u1 + (m� 1)P (ee)vx] :
Given that u1 > ux, this can only happen if be > ee which violates the assumption stated in the
proposition. Hence we have a contradiction and it follows that ex1 > e1x.
Next, we will show that exx � e1x. Here we will assume m � 3; though it is easy to check that

the proof is also valid for m = 2. In order to prove this part, lets assume the contrary. Therefore
e1x > exx and hence C

0
(e1x) > C

0
(exx): So,

P
0
(ee) [ux + (m� 1)P (be)vx] > P 0

(be) [ux + P (ee)v1 + (m� 2)P (be)vx]
However, this inequality will not hold since v1 > vx and ee > be by assumption. Hence it follows that
exx � e1x.
Next we look at the relationship between ex1 and exx. Since ee > be and ex1 > e1x, it is not

possible to have exx � ex1: Hence ex1 > exx:
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