10 research outputs found

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    No full text
    Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Fil: Watmough, Shaun. Trent University (trent University);Fil: Gilbert Parkes, Spencer. Trent University (trent University);Fil: Basiliko, Nathan. Laurentian University; CanadáFil: Lamit, Louis J.. Syracuse University; Estados UnidosFil: Lilleskov, Erik A.. Usda Forest Service; Estados UnidosFil: Andersen, Roxanne. University of the Highlands and Islands; Reino UnidoFil: del Aguila-Pasquel, Jhon. Instituto de Investigaciones de la Amazonía Peruana; PerúFil: Artz, Rebekka E.. The James Hutton Institute; Reino UnidoFil: Benscoter, Brian W.. Florida Atlantic University; Estados UnidosFil: Borken, Werner. University of Bayreuth; AlemaniaFil: Bragazza, Luca. Università di Ferrara; ItaliaFil: Brandt, Stefani M.. Arcasa; Estados UnidosFil: Bräuer, Suzanna L.. Appalachian State University; Estados UnidosFil: Carson, Michael A.. Laurentian University; CanadáFil: Chen, Xin. Zhejiang University; ChinaFil: Chimner, Rodney A.. Syracuse University; Estados UnidosFil: Clarkson, Bev R.. Landcare Research; Nueva ZelandaFil: Cobb, Alexander R.. Singapore-mit Alliance For Research And Technology; SingapurFil: Enriquez, Andrea Soledad. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Farmer, Jenny. University of Newcastle; Reino UnidoFil: Grover, Samantha P.. Royal Melbourne Institute of Technology. School of Science; AustraliaFil: Harvey, Charles F.. Singapore-mit Alliance For Research And Technology; SingapurFil: Harris, Lorna I.. University of Alberta; CanadáFil: Hazard, Christina. Université Claude Bernard Lyon 1; FranciaFil: Hoyt, Alison M.. Massachusetts Institute of Technology; Estados UnidosFil: Hribljan, John. University of Nebraska; Estados UnidosFil: Jauhiainen, Jyrki. University of Helsinki; FinlandiaFil: Juutinen, Sari. University of Helsinki; FinlandiaFil: Kane, Evan S.. Syracuse University; Estados UnidosFil: Knorr, Klaus Holger. Westfälische Wilhelms Universität; Alemani

    Variation in carbon and nitrogen concentrations among peatland categories at the global scale

    Get PDF
    Publisher Copyright: © 2022 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.Peer reviewe
    corecore