40 research outputs found

    RIPK1-mediated immunogenic cell death promotes anti-tumour immunity against soft-tissue sarcoma.

    Get PDF
    Drugs that mobilise the immune system against cancer are dramatically improving care for many people. Dying cancer cells play an active role in inducing anti-tumour immunity but not every form of death can elicit an immune response. Moreover, resistance to apoptosis is a major problem in cancer treatment and disease control. While the term "immunogenic cell death" is not fully defined, activation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) can induce a type of death that mobilises the immune system against cancer. However, no clinical treatment protocols have yet been established that would harness the immunogenic potential of RIPK1. Here, we report the first pre-clinical application of an in vivo treatment protocol for soft-tissue sarcoma that directly engages RIPK1-mediated immunogenic cell death. We find that RIPK1-mediated cell death significantly improves local disease control, increases activation of CD8+ T cells as well as NK cells, and enhances the survival benefit of immune checkpoint blockade. Our findings warrant a clinical trial to assess the survival benefit of RIPK1-induced cell death in patients with advanced disease at limb extremities

    ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer.

    Get PDF
    Trastuzumab prolongs survival in HER2 positive breast cancer patients. However, resistance remains a challenge. We have previously shown that ADAM17 plays a key role in maintaining HER2 phosphorylation during trastuzumab treatment. Beside ADAM17, ADAM10 is the other well characterized ADAM protease responsible for HER ligand shedding. Therefore, we studied the role of ADAM10 in relation to trastuzumab treatment and resistance in HER2 positive breast cancer. ADAM10 expression was assessed in HER2 positive breast cancer cell lines and xenograft mice treated with trastuzumab. Trastuzumab treatment increased ADAM10 levels in HER2 positive breast cancer cells (p ≤ 0.001 in BT474; p ≤ 0.01 in SKBR3) and in vivo (p ≤ 0.0001) compared to control, correlating with a decrease in PKB phosphorylation. ADAM10 inhibition or knockdown enhanced trastuzumab response in naïve and trastuzumab resistant breast cancer cells. Trastuzumab monotherapy upregulated ADAM10 (p ≤ 0.05); and higher pre-treatment ADAM10 levels correlated with decreased clinical response (p ≤ 0.05) at day 21 in HER2 positive breast cancer patients undergoing a trastuzumab treatment window study. Higher ADAM10 levels correlated with poorer relapse-free survival (p ≤ 0.01) in a cohort of HER2 positive breast cancer patients. Our studies implicate a role of ADAM10 in acquired resistance to trastuzumab and establish ADAM10 as a therapeutic target and a potential biomarker for HER2 positive breast cancer patients

    SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response.

    Get PDF
    SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population

    The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis

    Get PDF
    BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy

    Recurrent PTPRB and PLCG1 mutations in angiosarcoma

    Get PDF
    Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionizing radiation or chronic lymphoedema. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signaling genes, as a key driver of angiosarcoma. Here we employed whole-genome, whole-exome and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harbored predominantly truncating mutations in 10 of 39 tumors (26%). PLCG1, a signal transducer of tyrosine kinases, encoded a recurrent, likely activating p.Arg707Gln missense variant in 3 of 34 cases (9%). Overall, 15 of 39 tumors (38%) harbored at least one driver mutation in angiogenesis signaling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signaling in angiosarcoma

    Studies in the thymus of early-onset myasthenia gravis patients

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D205965 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Use of Digital Image Analysis for Outcome Prediction in Breast Cancer

    No full text
    INTRODUCTION / BACKGROUND: Breast cancer is the most common cancer in theUK. Although 10 year survival has increased over last decades, significant improvement is still needed. Clinical management decisions are largely dependent on assessment of histological features. The traditional approach to histopathological assessment has been the expert manual reporting of cases as viewed with a light microscope and has remained virtually unchanged since 1928, with minor modifications that have led to the current routinely applied semi-quantitative tumour grading system. However, the abundance of information within the tumour microenvironment is not reflected in the traditionally evaluated histological features, and there remain morphological features with prognostic potential that have previously been beyond investigation by traditional manual microscopic means. Tumour prognosis is closely related to metastasis, a complex process involving tumour cell migration through the stromal microenvironment before entering the lymphovascular compartment. Tumour/stromal interaction is crucial in the process and represents a potential candidate for therapeutic intervention. This interaction is partly affected by the pattern of tumour migration, revealed in the tumour architecture, and partly by the stromal response. AIMS: Our working hypothesis for the proposed study framework was that, with the application of digital image analysis technology, previously unquantifiable tumour architectural and microenvironmental features can be rigorously assessed in detail and tested as potential prognostic parameters. Quantified features included tumour extracellular particles at the tumour-stroma interface, tumour infiltrating lymphocytes, tumour nest perimeter, number, size and shape. The selected prognostic parameter was axillary lymph node metastasis. METHODS: Our initial study included diagnostic core biopsies from 19 HER2 positive breast cancers, with approximately equal number of ER strongly positive or weakly positive/ negative cases. Her2 immunohistochemistry allowed rigorous segregation of epithelial elements. Immunostained sections were digitised using a Hamamatsu scanner and x10 magnification consecutive segments from .ndpi files were captured as .jpeg files and analysed using Fiji (Image J), a public domain image processing program. The entirety of each core was examined in all cases. Several native Fiji Functions and Fiji plugins, including Trainable Weka Segmentation, Colour Segmentation and Colour Deconvolution were employed in different combinations for different types of analysis. The analysis is currently being expanded to a large set of digitised breast cancer tissue microarray (TMA) slides which have been stained with cytokeratin to highlight tumour cells. The set includes breast cancer cases from all molecular subtypes and is linked with detailed histological and outcome data. RESULTS: Increased number of extracellular particles at the tumour-stroma interface and decreased number of tumour-infiltrating lymphocytes were significantly associated with axillary lymph node metastasis (p=0.0062 and p=0.0154 respectively). Combination of the two parameters increased further the strength of the association (p=0.0011). Increased total tumour nest perimeter, tumour nest number and tumour nest shape irregularity were also significantly associated with axillary lymph node metastasis (p=0.0288, p=0.0085 and 0.0203 respectively). Data from the analysis of TMAs are currently analyzed and will be presented
    corecore