4 research outputs found

    3-D Echocardiography Is Feasible and More Reproducible than 2-D Echocardiography for In-Training Echocardiographers in Follow-up of Patients with Heart Failure with Reduced Ejection Fraction

    Get PDF
    Left ventricular volumes (LVVs) and ejection fraction (LVEF) are key elements in the evaluation and follow-up of patients with heart failure with reduced ejection fraction (HFrEF). Therefore, a feasible and reproducible imaging method to be used by both experienced and in-training echocardiographers is mandatory. Our aim was to establish if, in a large echo lab, echocardiographers in-training provide feasible and more reproducible results for the evaluation of patients with HFrEF when using 3-dimensional echocardiography (3-DE) versus 2-dimensional echocardiography (2-DE). Sixty patients with HFrEF (46 males, age: 58 ± 17 y) underwent standard transthoracic 2-D acquisitions and 3-D multibeat full volumes of the left ventricle. One expert user in echocardiography (expert) and three echocardiographers with different levels of training in 2-DE (beginner, medium and advanced) measured the 2-D LVVs and LVEFs on the same consecutive images of patients with HFrEF. Afterward, the expert performed a 1-mo training in 3-DE analysis of the users, and both the expert and trainees measured the 3-D LVVs and LVEF of the same patients. Measurements provided by the expert and all trainees in echo were compared. Six patients were excluded from the study because of poor image quality. The mean end-diastolic LVV of the remaining 54 patients was 214 ± 75 mL with 2-DE and 233 ± 77 mL with 3-DE. Mean LVEF was 35 ± 10% with 2-DE and 33 ± 10% with 3-DE. Our analysis revealed that, compared with the expert user, the trainees had acceptable reproducibility for the 2-DE measurements, according to their level of expertise in 2-DE (intra-class coefficients [ICCs] ranging from 0.75 to 0.94). However, after the short training in 3-DE, they provided feasible and more reproducible measurements of the 3-D LVVs and LVEF (ICCs ranging from 0.89-0.97) than they had with 2-DE. 3-DE is a feasible, rapidly learned and more reproducible method for the assessment of LVVs and LVEF than 2-DE, regardless of the basic level of expertise in 2-DE of the trainees in echocardiography. In echo labs with a wide range of staff experience, 3-DE might be a more accurate method for the follow-up of patients with HFrEF

    Methodological Gaps in Left Atrial Function Assessment by 2D Speckle Tracking Echocardiography

    No full text
    Abstract The assessment of left atrial (LA) function is used in various cardiovascular diseases. LA plays a complementary role in cardiac performance by modulating left ventricular (LV) function. Transthoracic two-dimensional (2D) phasic volumes and Doppler echocardiography can measure LA function non‑invasively. However, evaluation of LA deformation derived from 2D speckle tracking echocardiography (STE) is a new feasible and promising approach for assessment of LA mechanics. These parameters are able to detect subclinical LA dysfunction in different pathological condition. Normal ranges for LA deformation and cut-off values to diagnose LA dysfunction with different diseases have been reported, but data are still conflicting, probably because of some methodological and technical issues. This review highlights the importance of an unique standardized technique to assess the LA phasic functions by STE, and discusses recent studies on the most important clinical applications of this technique

    New Advanced Imaging Parameters and Biomarkers—A Step Forward in the Diagnosis and Prognosis of TTR Cardiomyopathy

    No full text
    Transthyretin amyloid cardiomyopathy (ATTR-CM) is an infiltrative disorder characterized by extracellular myocardial deposits of amyloid fibrils, with poor outcome, leading to heart failure and death, with significant treatment expenditure. In the era of a novel therapeutic arsenal of disease-modifying agents that target a myriad of pathophysiological mechanisms, timely and accurate diagnosis of ATTR-CM is crucial. Recent advances in therapeutic strategies shown to be most beneficial in the early stages of the disease have determined a paradigm shift in the screening, diagnostic algorithm, and risk classification of patients with ATTR-CM. The aim of this review is to explore the utility of novel specific non-invasive imaging parameters and biomarkers from screening to diagnosis, prognosis, risk stratification, and monitoring of the response to therapy. We will summarize the knowledge of the most recent advances in diagnostic, prognostic, and treatment tailoring parameters for early recognition, prediction of outcome, and better selection of therapeutic candidates in ATTR-CM. Moreover, we will provide input from different potential pathways involved in the pathophysiology of ATTR-CM, on top of the amyloid deposition, such as inflammation, endothelial dysfunction, reduced nitric oxide bioavailability, oxidative stress, and myocardial fibrosis, and their diagnostic, prognostic, and therapeutic implications
    corecore