49 research outputs found

    spatsurv:an R package for Bayesian inference with spatial survival models

    Get PDF
    Survival methods are used for the statistical modelling of time-to-event data, with applications in many scientific fields. Survival data are characterised by a set of complete records, in which the time of the event is known; and a set of censored records, in which the event was known to have occurred in an interval. When survival data are spatially referenced, the spatial variation in survival times may be of scientific interest. In this article, we introduce a new R package, spatsurv, for inference with spatially referenced survival data. The specific type of model fitted by this package is a parametric proportional hazards model in which the spatially correlated frailties are modelled by a log-Gaussian stochastic process. The package is extensible in that it allows the user to easily create new models for the baseline hazard function and spatial covariance function. The package implements an advanced adaptive Markov chain Monte Carlo algorithm to deliver Bayesian inference with minimal input from the user

    BIVARIATE BINOMIAL SPATIAL MODELLING LOA loa PREVALENCE IN TROPICAL AFRICA

    Get PDF
    We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold

    Point Process Methodology for On-line Spatio-temporal Disease Surveillance

    Get PDF
    The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion

    Bayesian Inference and Data Augmentation Schemes for Spatial, Spatiotemporal and Multivariate Log-Gaussian Cox Processes in R

    Get PDF
    Log-Gaussian Cox processes are an important class of models for spatial and spatiotemporal point-pattern data. Delivering robust Bayesian inference for this class of models presents a substantial challenge, since Markov chain Monte Carlo (MCMC) algorithms require careful tuning in order to work well. To address this issue, we describe recent advances in MCMC methods for these models and their implementation in the R package lgcp. Our suite of R functions provides an extensible framework for inferring covariate effects as well as the parameters of the latent field. We also present methods for Bayesian inference in two further classes of model based on the log-Gaussian Cox process. The first of these concerns the case where we wish to fit a point process model to data consisting of event-counts aggregated to a set of spatial regions: we demonstrate how this can be achieved using data-augmentation. The second concerns Bayesian inference for a class of marked-point processes specified via a multivariate log-Gaussian Cox process model. For both of these extensions, we give details of their implementation in R

    Visualising spatio-temporal health data: the importance of capturing the 4th dimension

    Full text link
    Confronted by a rapidly evolving health threat, such as an infectious disease outbreak, it is essential that decision-makers are able to comprehend the complex dynamics not just in space but also in the 4th dimension, time. In this paper this is addressed by a novel visualisation tool, referred to as the Dynamic Health Atlas web app, which is designed specifically for displaying the spatial evolution of data over time while simultaneously acknowledging its uncertainty. It is an interactive and open-source web app, coded predominantly in JavaScript, in which the geospatial and temporal data are displayed side-by-side. The first of two case studies of this visualisation tool relates to an outbreak of canine gastroenteric disease in the United Kingdom, where many veterinary practices experienced an unusually high case incidence. The second study concerns the predicted COVID-19 reproduction number along with incidence and prevalence forecasts in each local authority district in the United Kingdom. These studies demonstrate the effectiveness of the Dynamic Health Atlas web app at conveying geospatial and temporal dynamics along with their corresponding uncertainties.Comment: 4 Figures, 27 page

    Mapping English GP prescribing data: a tool for monitoring health-service inequalities

    Get PDF
    Objective The aim of this paper was to show that easily interpretable maps of local and national prescribing data, available from open sources, can be used to demonstrate meaningful variations in prescribing performance. Design The prescription dispensing data from the National Health Service (NHS) Information Centre for the medications metformin hydrochloride and methylphenidate were compared with reported incidence data for the conditions, diabetes and attention deficit hyperactivity disorder, respectively. The incidence data were obtained from the open source general practitioner (GP) Quality and Outcomes Framework. These data were mapped using the Ordnance Survey CodePoint Open data and the data tables stored in a PostGIS spatial database. Continuous maps of spending per person in England were then computed by using a smoothing algorithm and areas whose local spending is substantially (at least fourfold) and significantly (p<0.05) higher than the national average are then highlighted on the maps. Setting NHS data with analysis of primary care prescribing. Population England, UK. Results The spatial mapping demonstrates that several areas in England have substantially and significantly higher spending per person on metformin and methyphenidate. North Kent and the Wirral have substantially and significantly higher spending per child on methyphenidate. Conclusions It is possible, using open source data, to use statistical methods to distinguish chance fluctuations in prescribing from genuine differences in prescribing rates. The results can be interactively mapped at a fine spatial resolution down to individual GP practices in England. This process could be automated and reported in real time. This can inform decision-making and could enable earlier detection of emergent phenomena

    Spatial point process modelling in a GIS environment.

    No full text
    corecore