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Peter Diggle
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Barry Rowlingson and Ting-li Su

(Medical Statistics Unit, Lancaster University)

February 17, 2004

1 Introduction

The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance
and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies
in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the
Southampton area in southern England as a test-case. In this paper, we use the AEGISS
project to illustrate how spatio-temporal point process methodology can be used in the
development of a rapid-response, spatial surveillance system.

Current surveillance of gastroenteric disease in the UK relies on general practitioners report-
ing cases of suspected food-poisoning through a statutory notification scheme, voluntary
laboratory reports of the isolation of gastrointestinal pathogens and standard reports of
general outbreaks of infectious intestinal disease by public health and environmental health
authorities. However, most statutory notifications are made only after a laboratory reports
the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability
to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al
(2003).

A new and potentially valuable source of data on the incidence of non-specific gastro-enteric
infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct
data are less likely than reports by general practitioners to suffer from spatially and tem-
porally localized inconsistencies in reporting rates. Also, reporting delays by patients are
likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice
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specificity. Each call to NHS Direct is classified only according to the general pattern of
reported symptoms (Cooper et al, 2003).

The current paper focuses on the use of spatio-temporal statistical analysis for early detec-
tion of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric
symptoms, as reported to NHS Direct.

Section 2 describes our statistical formulation of this problem, the nature of the available
data and our approach to predictive inference. Section 3 describes the stochastic model.
Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the
model is used for spatio-temporal prediction. The paper concludes with a short discussion.

2 Statistical formulation

We define a case as any call to NHS Direct prompted by acute gastroenteric symptoms,
indexed by date of onset and residential location. The primary statistical objectives of
the analysis are to estimate the “normal” pattern of spatial and temporal variation in the
incidence of cases, and to identify quickly any anomalous variations from this normal pat-
tern. We address these objectives through a multiplicative decomposition of the space-time
intensity of incident cases, with separate terms for: overall spatial variation, modelled non-
parametrically as a smoothly varying surface λ0(x); temporal variation in the mean number of
incident cases per day, µ0(t), modelled parametrically through a combination of day-of-week
and time-of-year effects; and residual space-time variation, modelled as a spatio-temporal
stochastic process, R(x, t). Hence, the spatio-temporal incidence is

λ(x, t) = λ0(x)µ0(t)R(x, t).

Within this modelling framework, we define an anomaly as a spatially and temporally lo-
calised neighbourhood within which R(x, t) exceeds an agreed threshold, c, and evaluate pre-
dictive probabilities p(x, t; c) = P{R(x, t) > c|data until time t}. In practice, any anomalies
identified by the analysis would become subject to follow-up investigations, including mi-
crobiologic analysis, in order to determine whether any form of public health intervention is
warranted.

The analysis described in the present paper uses NHS Direct data from the county of Hamp-
shire, consisting of all 7126 cases reported between 1 January 2001 and 31 December 2002.

Because the pattern of calls to the NHS Direct service does not necessarily follow that of
the overall population at risk, the use of census population counts to construct a baseline
for local incidence could be misleading. We therefore use the accumulated historical pattern
of incident cases to estimate background spatial and temporal incidence rates; this assumes
that the effect of any localised anomalies which may have occurred during this period will
have a negligible effect on the overall spatial and temporal trends.
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Our proposed model for space-time variation has a hierarchical structure, in the sense that
it combines a model for a latent stochastic process, representing the unexplained space-
time variation in incidence, with a model for the observed data conditional on this latent
process. For Bayesian inference, we would add a third layer to the hierarchy, consisting of
a prior distributional specification for the model parameters. In Bayesian terminology, the
latent process is sometimes referred to as a parameter, and a model parameter as a “hyper-
parameter.” Whether or not we adopt the Bayesian viewpoint, an important difference
between the two sets of unknowns is that model (or hyper) parameters are intended to
describe global properties of the formulation, whereas the latent stochastic process describes
local features.

In principle, we favour Bayesian predictive inference as a way of incorporating all sources
of uncertainty into an assessment of predictive precision (see, for example, Diggle, Ribeiro
and Christensen, 2003). However, in the current application specifying the hyperprior for
Bayesian inference is not very important given the correctness of the model. The reason
is that our primary goal is predictive inference for the unobserved spatio-temporal process
R(x, t). Uncertainty in the predicted values of R(x, t) reflects the sparseness of data on
incident cases over the most recent few days, whereas estimation of global model parameters
uses the relatively abundant data provided by the historical incidence pattern over a period
of two years. It follows that prediction error will dominate estimation error, and predictive
inference will therefore be relatively insensitive to the choice of prior. More pragmatically,
a crucial requirement for the current application is that predictions can be updated daily.
For daily updates of the predictive probabilities p(x, t; c) we use a computationally intensive
Markov chain Monte Carlo algorithm with parameters fixed at their estimated values, which
runs overnight in our current computing environment.

3 Model Formulation

Our point process model is a straightforward adaptation of the model proposed by Brix
and Diggle (2001), which in turn is an example of a spatio-temporal Cox process (Cox,
1955). Conditional on an unobserved stochastic process R(x, t), cases form an inhomogeneous
Poisson point process with intensity λ(x, t), which we factorise as

λ(x, t) = λ0(x)µ0(t)R(x, t). (1)

In Equation 1, λ0(x) represents purely spatial variation in the intensity of reported cases.
Similarly, µ0(t) represents temporal variation in the spatially averaged incidence rate. For
identifiability, we scale λ0(x) to integrate to 1 over the study region, so that µ0(t) describes
the temporal variation in the mean number of incident cases per day. Note that each of
these deterministic components of the model combines aspects of the underlying population
at risk and of the pattern of disease. For example, if particular parts of the study region
consistently report higher or lower incidence than the overall average, then this variation
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will be absorbed into λ0(x) and will not be identified as anomalous. Also, µ0(t) includes
both day-of-week effects, which to some extent are artefactual, and seasonal effects, which
reflect genuine temporal variation in disease incidence. This emphasises that our surveillance
system is designed to detect only spatially and temporally localised anomalies.

The remaining term R(x, t) on the right hand side of (1) is modelled as a stationary, unit-
mean log-Gaussian stochastic process, hence

R(x, t) = exp{S(x, t)}, (2)

where S(x, t) is a stationary Gaussian process with mean −0.5σ2, variance σ2 and correlation
function ρ(u, v) = Corr{S(x, t), S(x − u, t − v)}. For a general discussion of log-Gaussian
Cox processes, see Møller et al (1998).

4 Estimation

4.1 Overall spatial variation

To estimate λ0(x), we use a kernel smoothing method with a Gaussian kernel, φ(x) =
(2π)−1 exp{−0.5||x||2}. The basic form of kernel estimation uses a fixed band-width h > 0
leading to the estimator

λ̃0(x) = n−1
n∑

i=1

h−2φ{(x − xi)/h}, (3)

where xi : i = 1, ..., n are the locations of the n incident cases in 2001 and 2002. Results
using the kernel estimator (3) are reported in Diggle et al (2003). We have since found that
we obtain better results using an adaptive band-width kernel estimator, which takes the
form

λ̂0(x) = n−1
n∑

i=1

h−2
i φ{(x − xi)/hi}. (4)

The adaptive estimator (4) differs from (3) by allowing a different value of the band-width,
hi, to be associated with each observed case-location xi. This has the intuitively appealing
consequence that it allows more smoothing to be applied to the data in sub-regions of
relatively low intensity.

In our implementation we have used the adaptive band-width prescription

hi = h0{λ̃0(xi)/g̃}
−0.5 (5)

where λ̃0(xi) is a pilot estimator of the form (3), g̃ is the geometric mean of the pilot estimates
λ̃0(xi) and h0 is chosen subjectively (Silverman, 1986). In practice, we also apply an edge-
correction as suggested by Diggle (1985) and Berman and Diggle (1989) to avoid substantial
negative bias in λ̂0(x) near the boundary of the study-region.
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We have compared the performance of the fixed and adaptive band-width versions of the ker-
nel estimator on simulated realisations of inhomogeneous Poisson processes whose intensities
are generated s λ(x) = exp{S(x)}, where S(x) is a stationary Gaussian process with covari-
ance function Cov{S(x), S(x−u)} = σ2 exp(−u/φ). We use the integrated squared error be-
tween the true and estimated intensities as a performance criterion. For each comparison, we
simulate 100 samples, each consisting of 1000 points on a square region. From each simulated
sample we compute the minimum integrated squared errors, ISEf and ISEa achieveable by
the fixed and adaptive band-width kernel estimator respectively, using the fact that the true
λ(x) is known for each simulated realisation. We then compute r = log(ISEa/ISEf) as a
measure of the comparative performance of the two estimators. To summarise the results for
each pair of values of the model parameters (σ2, φ), we compute means r̄ and approximate
95% confidence limits r̄ ± 2SE(r̄). Figure 1 shows the means and confidence limits back-
transformed to the scale of ISE-ratios. These indicate the modest, but consistent superiority
of the adaptive over the fixed band-width kernel estimator. Note also that the superiority
is more pronounced at larger values of σ2 or φ, consistent with the fact that larger values
of σ2 or φ are associated with more pronounced spatial heterogenity in the resulting point
patterns.

Figure 2 shows our estimated surface λ̂0(x) for the 2001 and 2002 NHS Direct data. This
estimate uses the adaptive band-width prescription with h0 = 1.5km in (4), resulting in local
values of hi ranging between 0.71 and 14.00.

4.2 Overall temporal variation

With the scalings adopted for λ0(x) and for R(x, t), the function µ0(t) represents the un-
conditional expectation of the number of cases on day t. We therefore estimate µ0(t) by
a standard Poisson log-linear regression model; note that the over-dispersion induced by
the stochastic component R(x, t) does not affect the consistency of point estimates derived
from the Poisson model, but does invalidate the nominal standard errors obtained under the
Poisson assumption.

The empirical pattern of daily incident counts shows strong day-of-week effects, with excess
numbers especially at weekends when more traditional sources of medical advice are less
accessible. Time-of-year effects are also apparent, with higher incidence in the spring and
autumn. Finally, there is an impression of an overall rising trend over time, which is likely
to be due at least in part to progressive uptake of the NHS Direct service during its early
years of operation. To take account of all of these effects, we fitted the model

log µ0(t) = δd(t) + α1 cos(ωt) + β1 sin(ωt) + α2 cos(2ωt) + β2 sin(2ωt) + γt, (6)

where ω = 2π/365, corresponding to annual periodicity in incidence rates. Point estimates
for the day-of-week effects in the regression model (6) are δ̂d = 2.24, 1.92, 1.76, 1.82, 1.76, 1.78, 2.12,
where d = 1 corresponds to Sunday, and so on. Point estimates of the harmonic regression
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Figure 1: Summary results from simulation study to compare performance of adaptive and
fixed band-width kernel estimators, for different values of the Gaussian process parameters
σ2 and φ. The plotted lines show point estimates (solid line) and 95% confidence limits
(dashed lines) for the ratio of minimum integrated squared errors achievable by adaptive
and fixed band-width estimators.

parameters are α̂1 = −0.120, β̂1 = −0.083, α̂2 = −0.013 and β̂2 = 0.054, whilst the esti-
mate of the slope parameter for the overall trend is γ̂ = 0.00074. Figure 3 compares the
fitted regression curve with observed counts, averaged over successive one-week intervals to
eliminate day-of-week effects.

4.3 Spatial and temporal dependence

To estimate parameters of S(x, t) we use the moment-based methods of Brix and Diggle
(2001), which operate by matching empirical and theoretical descriptors of the spatial and
temporal covariance structure of the point process model. For the current analysis, we
assumed a separable correlation structure in which ρ(u, v) = ρx(u)ρt(v). For the spatial
component we used an exponential correlation function, rx(u) = exp(−|u|/φ). Then, the
pair correlation function of the point process Nt is g(u) = exp{σ2 exp(−|u|/φ)}, and we
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Figure 2: Kernel estimator for the overall spatial variation in reporting rates, λ̂0(x), based
on NHS Direct data from the county of Hampshire.

estimate σ2 and φ to minimize the criterion
∫ u0

0
[{log ĝ(u)} − {log g(u)}]2du, (7)

where u0 = 2km and ĝ(u) is the empirical pair correlation function. Figure 4a shows a good
fit between the resulting fitted and empirical functions log g(u). The estimated parameter
values are σ̂2 = 8.85 and φ̂ = 0.19km.

For the temporal correlation structure of S(x, t), we again assume an exponential form,
ρt(v) = exp(−|v|/θ), and estimate θ by matching empirical and theoretical temporal co-
variances of the observed numbers of incident cases per day, Nt say. Note that an error in
the expression for Cov(Nt, Nt−v) given by Brix and Diggle (2001) is corrected in Brix and
Diggle (2003). For our model, the time-variation in µ0(t) makes the covariance structure of
Nt non-stationary. We obtain

Cov(Nt, Nt−v) = µ0(t)1(v = 0) + {µ0(t)µ0(t − v)} ×

{
∫

W

∫
W

λ0(x1)λ0(x2)exp[σ2 exp(−v/θ) exp(−u/φ)]dx1dx2 − 1}

(8)
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Figure 3: Observed counts of reported cases per day, averaged over successive weekly periods
(solid dots), compared with the fitted harmonic regression model of daily incidence (solid
line).

The estimation criterion for θ is to miminise
v0∑

v=1

n∑
t=v+1

{Ĉ(t, v) − C(t, v; θ)}2,

where v0 = 14 days and

Ĉ(t, v) = Nt(W )Nt−v(W ) − µ̂0(t)µ̂0(t − v).

Figure 4b compares the empirical autocovariance function of the time-series of daily incident
cases Nt with “fitted” covariance functions obtained by averaging the values of C(t, v; θ̂) over
time, t, for each time-lag, v. The estimated value of the temporal correlation parameter is
θ̂ = 2.0 days.

5 Spatio-temporal prediction

To solve the prediction problem of interest, namely the identification of spatially and tem-
porally localised occurrences of unusually high incidence, we first need to generate a sample
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Figure 4: (a) Empirical (solid line) and fitted (dashed line) log-pair correlation functions
for the NHS Direct data. (b) Empirical (dashed line) and fitted (solid line) autocovariance
functions for the NHS Direct data. See text for detailed explanation.

from the predictive distribution of the surface S(x, t), and hence R(x, t), conditional on the
observed spatio-temporal pattern of incident cases up to and including time t. In practice, we
do this on a fine grid of locations, xk : k = 1, ..., m, to cover the study region. As noted earlier,
we also ignore uncertainty in the estimated values of the model parameters, on the grounds
that in this application, estimation uncertainty is negligible by comparison with prediction
uncertainty. Having generated our sample, for each grid-point xk and a declared intervention
threshold c we approximate the predictive probability, p(xk, t; c) = P{R(xk, t) > c|data}, by
the observed proportion of sampled values R(xk, t) which exceed c. We then plot these
approximate exceedance probabilities as a colour-coded map, in which the colour scale is
chosen so as to highlight only sub-regions where p(x, t; c) is close to 1.

Following Brix and Diggle (2001), we use a Metropolis-adjusted Langevin algorithm (MALA)
to generate samples from the predictive distribution of the current surface S(x, t). Specifi-
cally, if St denotes the vector with elements S(xk, t) : k = 1, ..., m Nt denotes the locations
and times of all reported cases up to and including time t, the MALA generates samples
from the conditional distribution of St given Nt.

Although the process St is Markov in time, Nt is not, and the predictive distribution of
S(x, t) strictly depends on the complete history of Nt. In practice, events from the remote
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past have a vanishing influence on the predictive distribution of S(x, t). To avoid storing
infeasible amounts of historical data, Brix and Diggle (2001) applied a 5-day cut-off, deter-
mined experimentally as the point beyond which retention of historical data had essentially
no effect on the predictive distribution. The appropriate choice of cut-off will be application-
specific, depending on the abundance of the data and the pattern of temporal correlation.
In principle, a straightforward modification of the algorithm can be used to generate sam-
ples from the predictive distribution of S(x, t + u) for any lead-time u. However, because
of the short-range nature of the estimated temporal correlation, in our application forward
projections rapidly become uninformative as the lead-time increases.

In applying the MALA algorithm to the NHS Direct data we fixed all of the model parameters
at their estimated values with the exception of the temporal trend parameter γ in (6). This
parameter was included in the model to allow for progressive uptake in the use of the NHS
Direct service. On the assumption that the overall level of use has now stabilised, we chose
to extrapolate the linear trend at a constant level γ̂t0 where t0 corresponds to 31 December
2002. However, and as discussed in Section 6 below, the accuracy of this and other parametric
assumptions can and should be reviewed periodically as data accumulate over time.

An integral part of the AEGISS project is to develop a web-based reporting system in which
analyses are updated whenever new incident data are obtained. Each day, a program running
in Lancaster checks for the arrival of new data. Whenever 5 consecutive days of data are
identifed, these data are then passed to another programme which runs the spatial prediction
algorithm. Outputs from the prediction algorithm in the form of maps of the exceedance
probability surfaces p(x, t; c) for each of a set of values of c are then passed back to a web-site.
The actual analyses of the data are carried out using C programs with an interface to the R
system (http://www.r-project.org/).

The threshold values used on the web-site are currently c = 2, 4 or 8. However, it would
be preferable to relate these to the estimated parameters of the fitted model. Under our
assumed model, the p-quantile of R(x, t) is c = exp{−0.5σ2 + σΦ−1(p)}. Setting σ2 at its
estimated value 8.85 would give threshold values c = 0.54, 1.60 and 12.13 corresponding to
p = 0.9, 0.95 and 0.99, respectively.

Figure 5 shows a static example of the surface p(x, t; c) for t corresponding to 6 March 2003,
and threshold value c = 4. The map suggests three possible anomalies near the south-west,
south-east and north-east boundaries of the study region. In practice, it is more useful to
track the evolution of p(x, t; c) over successive days. An anomaly which appears one day
and disappears the next is likely to be dismissed by a public health practitioner as a false
positive, whereas one which persists over a few days, or at higher thresholds c, should prompt
an intervention of some kind. The web-site http://aegissdev.lancs.ac.uk:8080/Demo/

contains a record of daily updates over a three-month period, which can be examined inter-
actively. Simple click operations allow the user to step forward and backward in time, and
through the available values of c. These are currently set as c = 2, 4 and 8. However
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Figure 5: Posterior exceedance probabilities, p(x, t; c) = P[R(x, t) > c|Nt], for t correspond-
ing to 6 March 2003 and c = 4.

6 Discussion

Point process modelling has the advantage that it imposes no artificial, discrete spatial or
temporal units on the underlying risk surface. Specifically, the scales of stochastic depen-
dence in space and in time are determined by the data, and these estimated scales are then
reflected in the amounts of spatial and temporal smoothing that are applied in constructing
the predicted risk surfaces.

A possible objection to our particular model is that the Cox process is not a model for
infectious disease. However, because of the duality between spatial clustering and spatial
heterogeneity of risk noted by Bartlett (1964), our inhomogeneous Cox process model can
describe clustered patterns of incidence empirically by ascribing local spatio-temporal con-
centrations of cases to peaks in the stochastic process R(x, t), after adjusting for overall
spatial and temporal trends through the deterministic functions λ0(x) and µ0(t). It is partly
for this reason that we suggest using the term “anomaly” rather than “outbreak” to de-
scribe our findings, as we recognise that some anomalies will prove to be artefactual. In
other words, we aim only to provide early indications of possible outbreaks, rather than
definitive evidence that an outbreak has occurred.
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Another possible concern is that our approach necessarily assumes that the residential lo-
cation of each case is substantively relevant. In practice an individual’s exposure to risk is
determined by a complex combination of their residential, working and leisure locations and
activities.

Some aspects of the model-fitting are still under investigation. In particular, our current
methods of parameter estimation, especially with regard to the spatial and temporal covari-
ance parameters, are very ad hoc. We intend to adapt the methods described in Benes et al
(2002) and Møller and Waagepetersen (2004) to obtain maximum likelihood estimators of
our model parameters.

The work reported here used data on cases reported up to the end of 2002. Examination
of data subsequently obtained for 2003 illustrates the need for periodic review of the fitted
model parameters. For example, Figure 6 shows an extrapolation of Figure 3, in which the
model for the mean daily incidence, µ̂0(t), fitted from 2001 and 2002 data has been projected
forward in time and compared with the actual 2003 data. The two projections correspond
to continuation of the linear increase through 2003 and extrapolation of the linear term
at a constant level. The actual 2003 data show the anticipated spring peak in incidence,
but thereafter the incidence declines sharply by comparison with either of the extrapolated
curves. This suggests that we may need to consider a stochastic model for the evolving
temporal trend in incidence, rather than a deterministic regression model.

In conclusion, we have illustrated how spatial statistical methods can help to develop on-line
surveillance systems for common diseases. The spatial statistical analyses reported here are
intended to supplement, rather than to replace, existing protocols. Their aim is to identify,
as quickly as possible, statistical anomalies in the space-time pattern of incident cases, which
would be followed up by other means. In some cases, the anomalies will be transient features
of no particular public health significance. In others, the statistical early warning should
help to ensure timely intervention to minimize the public health consequences; for example,
when follow-up of cases in an area with a significantly elevated risk reveals exposure to a
common risk factor or infection with a common pathogen.
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