166 research outputs found

    An ‘oligarchy’ rules neural development.

    Get PDF
    Review Oligodendrocytes engage in complex interactions with nerve cell bodies and axons in the CNS, notably in the formation of myelin sheaths Transcription factors as arbiters of oligodendroglial cell fate The roles of transcription factors in neuronal cell fate specification in the CNS have been intensively studied over the past decade (reviewed in Ref

    Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma

    Get PDF
    Recent studies have identified stem cells in brain cancer. However, their relationship to normal CNS progenitors, including dependence on common lineage-restricted pathways, is unclear. We observe expression of the CNS-restricted transcription factor, OLIG2, in human glioma stem and progenitor cells reminiscent of type C transit-amplifying cells in germinal zones of the adult brain. Olig2 function is required for proliferation of neural progenitors and for glioma formation in a genetically relevant murine model. Moreover, we show p21^(WAF1/CIP1), a tumor suppressor and inhibitor of stem cell proliferation, is directly repressed by OLIG2 in neural progenitors and gliomas. Our findings identify an Olig2-regulated lineage-restricted pathway critical for proliferation of normal and tumorigenic CNS stem cells

    Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors

    Get PDF
    SummaryThe bHLH transcription factors that regulate early development of the central nervous system can generally be classified as either antineural or proneural. Initial expression of antineural factors prevents cell cycle exit and thereby expands the pool of neural progenitors. Subsequent (and typically transient) expression of proneural factors promotes cell cycle exit, subtype specification, and differentiation. Against this backdrop, the bHLH transcription factor Olig2 in the oligodendrocyte lineage is unorthodox, showing antineural functions in multipotent CNS progenitor cells but also sustained expression and proneural functions in the formation of oligodendrocytes. We show here that the proliferative function of Olig2 is controlled by developmentally regulated phosphorylation of a conserved triple serine motif within the amino-terminal domain. In the phosphorylated state, Olig2 maintains antineural (i.e., promitotic) functions that are reflected in human glioma cells and in a genetically defined murine model of primary glioma

    Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence

    Get PDF
    The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation

    Multicenter Consensus Approach to Evaluation of Neonatal Hypotonia in the Genomic Era: A Review

    Get PDF
    IMPORTANCE: Infants with hypotonia can present with a variety of potentially severe clinical signs and symptoms and often require invasive testing and multiple procedures. The wide range of clinical presentations and potential etiologies leaves diagnosis and prognosis uncertain, underscoring the need for rapid elucidation of the underlying genetic cause of disease. OBSERVATIONS: The clinical application of exome sequencing or genome sequencing has dramatically improved the timely yield of diagnostic testing for neonatal hypotonia, with diagnostic rates of greater than 50% in academic neonatal intensive care units (NICUs) across Australia, Canada, the UK, and the US, which compose the International Precision Child Health Partnership (IPCHiP). A total of 74% (17 of 23) of patients had a change in clinical care in response to genetic diagnosis, including 2 patients who received targeted therapy. This narrative review discusses the common causes of neonatal hypotonia, the relative benefits and limitations of available testing modalities used in NICUs, and hypotonia management recommendations. CONCLUSIONS AND RELEVANCE: This narrative review summarizes the causes of neonatal hypotonia and the benefits of prompt genetic diagnosis, including improved prognostication and identification of targeted treatments which can improve the short-term and long-term outcomes. Institutional resources can vary among different NICUs; as a result, consideration should be given to rule out a small number of relatively unique conditions for which rapid targeted genetic testing is available. Nevertheless, the consensus recommendation is to use rapid genome or exome sequencing as a first-line testing option for NICU patients with unexplained hypotonia. As part of the IPCHiP, this diagnostic experience will be collected in a central database with the goal of advancing knowledge of neonatal hypotonia and improving evidence-based practice

    Loss of the Wnt/β-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury

    Get PDF
    Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/β-catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/β-catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/β-catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/β-catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/β-catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy

    Spatial Analysis of Expression Patterns Predicts Genetic Interactions at the Mid-Hindbrain Boundary

    Get PDF
    The isthmic organizer mediating differentiation of mid- and hindbrain during vertebrate development is characterized by a well-defined pattern of locally restricted gene expression domains around the mid-hindbrain boundary (MHB). This pattern is established and maintained by a regulatory network between several transcription and secreted factors that is not yet understood in full detail. In this contribution we show that a Boolean analysis of the characteristic spatial gene expression patterns at the murine MHB reveals key regulatory interactions in this network. Our analysis employs techniques from computational logic for the minimization of Boolean functions. This approach allows us to predict also the interplay of the various regulatory interactions. In particular, we predict a maintaining, rather than inducing, effect of Fgf8 on Wnt1 expression, an issue that remained unclear from published data. Using mouse anterior neural plate/tube explant cultures, we provide experimental evidence that Fgf8 in fact only maintains but does not induce ectopic Wnt1 expression in these explants. In combination with previously validated interactions, this finding allows for the construction of a regulatory network between key transcription and secreted factors at the MHB. Analyses of Boolean, differential equation and reaction-diffusion models of this network confirm that it is indeed able to explain the stable maintenance of the MHB as well as time-courses of expression patterns both under wild-type and various knock-out conditions. In conclusion, we demonstrate that similar to temporal also spatial expression patterns can be used to gain information about the structure of regulatory networks. We show, in particular, that the spatial gene expression patterns around the MHB help us to understand the maintenance of this boundary on a systems level

    Challenges to curing primary brain tumours.

    Get PDF
    Despite decades of research, brain tumours remain among the deadliest of all forms of cancer. The ability of these tumours to resist almost all conventional and novel treatments relates, in part, to the unique cell-intrinsic and microenvironmental properties of neural tissues. In an attempt to encourage progress in our understanding and ability to successfully treat patients with brain tumours, Cancer Research UK convened an international panel of clinicians and laboratory-based scientists to identify challenges that must be overcome if we are to cure all patients with a brain tumour. The seven key challenges summarized in this Position Paper are intended to serve as foci for future research and investment

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer

    Mesenchymal Transition and PDGFRA Amplification/Mutation Are Key Distinct Oncogenic Events in Pediatric Diffuse Intrinsic Pontine Gliomas

    Get PDF
    Diffuse intrinsic pontine glioma (DIPG) is one of the most frequent malignant pediatric brain tumor and its prognosis is universaly fatal. No significant improvement has been made in last thirty years over the standard treatment with radiotherapy. To address the paucity of understanding of DIPGs, we have carried out integrated molecular profiling of a large series of samples obtained with stereotactic biopsy at diagnosis. While chromosomal imbalances did not distinguish DIPG and supratentorial tumors on CGHarrays, gene expression profiling revealed clear differences between them, with brainstem gliomas resembling midline/thalamic tumours, indicating a closely-related origin. Two distinct subgroups of DIPG were identified. The first subgroup displayed mesenchymal and pro-angiogenic characteristics, with stem cell markers enrichment consistent with the possibility to grow tumor stem cells from these biopsies. The other subgroup displayed oligodendroglial features, and appeared largely driven by PDGFRA, in particular through amplification and/or novel missense mutations in the extracellular domain. Patients in this later group had a significantly worse outcome with an hazard ratio for early deaths, ie before 10 months, 8 fold greater that the ones in the other subgroup (p = 0.041, Cox regression model). The worse outcome of patients with the oligodendroglial type of tumors was confirmed on a series of 55 paraffin-embedded biopsy samples at diagnosis (median OS of 7.73 versus 12.37 months, p = 0.045, log-rank test). Two distinct transcriptional subclasses of DIPG with specific genomic alterations can be defined at diagnosis by oligodendroglial differentiation or mesenchymal transition, respectively. Classifying these tumors by signal transduction pathway activation and by mutation in pathway member genes may be particularily valuable for the development of targeted therapies
    corecore