610 research outputs found

    A Phase 1 Trial of CNDO-109-Activated Natural Killer Cells in Patients with High-Risk Acute Myeloid Leukemia

    Get PDF
    Natural killer (NK) cells are an emerging immunotherapy approach to acute myeloid leukemia (AML); however, the optimal approach to activate NK cells before adoptive transfer remains unclear. Human NK cells that are primed with the CTV-1 leukemia cell line lysate CNDO-109 exhibit enhanced cytotoxicity against NK cell–resistant cell lines. To translate this finding to the clinic, CNDO-109–activated NK cells (CNDO-109-NK cells) isolated from related HLA-haploidentical donors were evaluated in a phase 1 dose-escalation trial at doses of 3 × 105 (n = 3), 1 × 106 (n = 3), and 3 × 106 (n = 6) cells/kg in patients with AML in first complete remission (CR1) at high risk for recurrence. Before CNDO-109-NK cell administration, patients were treated with lymphodepleting fludarabine/cyclophosphamide. CNDO-109-NK cells were well tolerated, and no dose-limiting toxicities were observed at the highest tested dose. The median relapse-free survival (RFS) by dose level was 105 (3 × 105), 156 (1 × 106), and 337 (3 × 106) days. Two patients remained relapse-free in post-trial follow-up, with RFS durations exceeding 42.5 months. Donor NK cell microchimerism was detected on day 7 in 10 of 12 patients, with 3 patients having evidence of donor cells on day 14 or later. This trial establishes that CNDO-109-NK cells generated from related HLA haploidentical donors, cryopreserved, and then safely administered to AML patients with transient persistence without exogenous cytokine support. Three durable complete remissions of 32.6 to 47.6+ months were observed, suggesting additional clinical investigation of CNDO-109-NK cells for patients with myeloid malignancies, alone or in combination with additional immunotherapy strategies, is warranted

    A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy

    Get PDF
    Purpose: Recent studies have found that KRAS mutations predict resistance to monoclonal antibodies targeting the epidermal growth factor receptor in metastatic colorectal cancer (mCRC). A polymorphism in a let-7 microRNA complementary site (lcs6) in the KRAS 3′ untranslated region (UTR) is associated with an increased cancer risk in non-small-cell lung cancer and reduced overall survival (OS) in oral cancers. We tested the hypothesis whether this polymorphism may be associated with clinical outcome in KRAS wild-type (KRASwt) mCRC patients treated with cetuximab monotherapy. Patients and methods: The presence of KRAS let-7 lcs6 polymorphism was evaluated in 130 mCRC patients who were enrolled in a phase II study of cetuximab monotherapy (IMCL-0144). Genomic DNA was extracted from dissected formalin-fixed paraffin-embedded tumor tissue, KRAS mutation status and polymorphism were assessed using direct sequencing and PCR restriction fragment length polymorphism technique. Results: KRAS let-7 lcs6 polymorphism was found to be related to object response rate (ORR) in mCRC patients whose tumors had KRASwt. The 12 KRASwt patients harboring at least a variant G allele (TG or GG) had a 42% ORR compared with a 9% ORR in 55 KRASwt patients with let-7 lcs6 TT genotype (P = 0.02, Fisher's exact test). KRASwt patients with TG/GG genotypes had trend of longer median progression-free survival (3.9 versus 1.3 months) and OS (10.7 versus 6.4 months) compared to those with TT genotypes. Conclusions: These results are the first to indicate that the KRAS 3'UTR polymorphism may predict for cetuximab responsiveness in KRASwt mCRC patients, which warrants validation in other clinical trial

    Erlotinib dosing-to-rash: A phase II intrapatient dose escalation and pharmacologic study of erlotinib in previously treated advanced non-small cell lung cancer

    Get PDF
    Background: To evaluate the anticancer activity of erlotinib in patients with previously treated, advanced non-small cell lung cancer (NSCLC) whose dose is increased to that associated with a maximal level of tolerable skin toxicity (i.e., target rash (TR)); to characterise the pharmacokinetics (PK) and pharmacodynamics (PD) of higher doses of erlotinib. Methods: Patients initially received erlotinib 150 mg per day. The dose was successively increased in each patient to that associated with a TR. Anticancer activity was evaluated. Plasma, skin, and hair were sampled for PK and PD studies. Results: Erlotinib dose escalation to 200-475 mg per day was feasible in 38 (90%) of 42 patients. Twenty-four (57%) patients developed a TR, but 19 (79%) did so at 150 mg per day. Five (12%) patients, all of whom developed a TR, had a partial response. Median progression-free survival (PFS) was 2.3 months (95% CI: 1.61, 4.14); median PFS was 3.5 months and 1.9 months, respectively, for patients who did and did not experience a TR (hazard ratio, 0.51; P0.051). Neither rash severity nor response correlated with erlotinib exposure. Conclusion: Intrapatient dose escalation of erlotinib does not appreciably increase the propensity to experience a maximal level of tolerable skin toxicity, or appear to increase the anticancer activity of erlotinib in NSCLC

    Phase I/II study of DHA–paclitaxel in combination with carboplatin in patients with advanced malignant solid tumours

    Get PDF
    DHA–paclitaxel is a conjugate of paclitaxel and the fatty acid, docosahexaenoic acid. Preclinical studies have demonstrated increased activity, relative to paclitaxel, with the potential for an improved therapeutic ratio. We conducted a phase I study to determine the maximum tolerated doses of DHA–paclitaxel and carboplatin when administered in combination. Two cohorts of patients were treated: carboplatin AUC 5 with DHA–paclitaxel 660 mg m-2 and carboplatin AUC 5 with DHA–paclitaxel 880 mg m-2. Both drugs were given on day 1 every 21 days. A total of 15 patients were enrolled with a median age of 59 years (range 33–71). All patients had advanced cancer refractory to standard treatment, performance status 0–2 and were without major organ dysfunction. A total of 54 cycles of treatment were delivered. No dose-limiting toxicity (DLT) was seen in the first cohort of three patients. In an expanded second cohort, neutropenia was the main DLT, occurring in the first cycle of treatment in five of 12 patients: three of these patients and one additional patient also experienced dose-limiting grade 3 transient rises in liver transaminases. No alopecia was seen and one patient developed clinically significant neuropathy. One partial response was seen in a patient with advanced adenocarcinoma of the oesophago-gastric junction and 12 patients had stable disease with a median time to progression of 184 days (range 60–506 days). The recommended phase II dose in pretreated patients is Carboplatin AUC 5 and DHA–paclitaxel 660 mg m-2 given every 21 days. Further studies with Carboplatin AUC 5 and DHA-paclitaxel 880 mg m-2, given every 28 days, are warranted in chemo-naive patients

    Efficacy assessment of sustained intraperitoneal paclitaxel therapy in a murine model of ovarian cancer using bioluminescent imaging

    Get PDF
    We evaluated the pre-clinical efficacy of a novel intraperitoneal (i.p.) sustained-release paclitaxel formulation (PTXePC) using bioluminescent imaging (BLI) in the treatment of ovarian cancer. Human ovarian carcinoma cells stably expressing the firefly luciferase gene (SKOV3Luc) were injected i.p. into SCID mice. Tumour growth was evaluated during sustained or intermittent courses of i.p. treatment with paclitaxel (PTX). In vitro bioluminescence strongly correlated with cell survival and cytotoxicity. Bioluminescent imaging detected tumours before their macroscopic appearance and strongly correlated with tumour weight and survival. As compared with intermittent therapy with Taxol®, sustained PTXePC therapy resulted in significant reduction of tumour proliferation, weight and BLI signal intensity, enhanced apoptosis and increased survival times. Our results demonstrate that BLI is a useful tool in the pre-clinical evaluation of therapeutic interventions for ovarian cancer. Moreover, these results provide evidence of enhanced therapeutic efficacy with the sustained PTXePC implant system, which could potentially translate into successful clinical outcomes

    Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane

    Get PDF
    Poly-(γ-l-glutamylglutamine)–paclitaxel (PGG–PTX) is a novel polymer-based formulation of paclitaxel (PTX) in which the PTX is linked to the polymer via ester bonds. PGG–PTX is of interest because it spontaneously forms very small nanoparticles in plasma. In mouse models, PGG–PTX increased tumor exposure to PTX by 7.7-fold relative to that produced by PTX formulated in Cremophor. In this study, the efficacy of PGG–PTX was compared to that of Abraxane, an established nanoparticular formulation of PTX, in three different tumor models. Efficacy was quantified by delay in tumor growth of NCI H460 human lung cancer, 2008 human ovarian cancer and B16 melanoma xenografts growing in athymic mice following administration of equitoxic doses of PGG–PTX and Abraxane administered on either a single dose or every 7 day schedule. Toxicity was assessed by change in total body weight. The efficacy and toxicity of PGG–PTX was shown to increase with dose in the H460 model. PGG–PTX was ~1.5-fold less potent than Abraxane. PGG–PTX produced statistically significantly greater inhibition of tumor growth than Abraxane in all three tumor models when mice were given single equitoxic doses of drug. When given every 7 days for 3 doses, PGG–PTX produced greater inhibition of tumor growth while generating much less weight loss in mice bearing H460 tumors. PGG–PTX has activity that is superior to that of Abraxane in multiple tumor models. PGG–PTX has the potential to out-perform Abraxane in enhancing the delivery of PTX tumors while at the same time further reducing the toxicity of both single dose and weekly treatment regimens

    Epidermal growth factor receptor dimerization status determines skin toxicity to HER-kinase targeted therapies

    Get PDF
    Skin toxicity, a common drug-related adverse event observed in cancer patients treated with epidermal growth factor receptor (EGFR)-directed therapies is rarely seen with therapies targeting HER2. This study reports the significance of the EGFR and HER2 dimerization status in skin with regard to these dermatologic side effects. We demonstrate the differential effect of HER-directed therapies on the ligand driven activation status of EGFR, HER2 and MAPK in normal human epidermal keratinocytes. EGFR-directed therapies, such as gefitinib and cetuximab, inhibited ligand-induced activation of EGFR and MAPK in human keratinocytes. Pertuzumab, an antibody interfering with functional HER2 heterodimerization, failed to block ligand-induced HER signaling in primary keratinocytes. Using a novel proximity-based dimerization assay (eTag™) we show that EGFR homodimers are the predominant HER dimer pair in normal primary kertinocytes and in normal skin tissue from 16 patients with solid malignancies. The presence of [p]EGFR and [p]MAPK, but the absence of [p]HER2, demonstrates productive signaling via EGFR but not HER2 in human skin. These data illustrate the importance of the EGFR dimerization partner in human skin and suggests that inhibition of EGFR homodimer signaling rather than EGFR/HER2 heterodimer signaling maybe the key molecular event determining dermatologic toxicity discrepancies observed between EGFR-targeted versus HER2-targeted therapies

    Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry

    Get PDF
    Ixabepilone (BMS-247550) is a semi-synthetic, microtubule stabilizing epothilone B analogue which is more potent than taxanes and has displayed activity in taxane-resistant patients. The human plasma pharmacokinetics of ixabepilone have been described. However, the excretory pathways and contribution of metabolism to ixabepilone elimination have not been determined. To investigate the elimination pathways of ixabepilone we initiated a mass balance study in cancer patients. Due to autoradiolysis, ixabepilone proved to be very unstable when labeled with conventional [14C]-levels (100 μCi in a typical human radio-tracer study). This necessitated the use of much lower levels of [14C]-labeling and an ultra-sensitive detection method, Accelerator Mass Spectrometry (AMS). Eight patients with advanced cancer (3 males, 5 females; median age 54.5 y; performance status 0–2) received an intravenous dose of 70 mg, 80 nCi of [14C]ixabepilone over 3 h. Plasma, urine and faeces were collected up to 7 days after administration and total radioactivity (TRA) was determined using AMS. Ixabepilone in plasma and urine was quantitated using a validated LC-MS/MS method. Mean recovery of ixabepilone-derived radioactivity was 77.3% of dose. Fecal excretion was 52.2% and urinary excretion was 25.1%. Only a minor part of TRA is accounted for by unchanged ixabepilone in both plasma and urine, which indicates that metabolism is a major elimination mechanism for this drug. Future studies should focus on structural elucidation of ixabepilone metabolites and characterization of their activities

    Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A frequent manifestation of advanced NSCLC is malnutrition, even though there are many studies which relate it with a poor survival, its relation with toxicity has not yet been consistently reported. The aim of this study was to associate malnutrition and albumin serum levels with the occurrence of chemotherapy-induced toxicity in cisplatin plus paclitaxel chemotherapy-treated NSCLC.</p> <p>Methods</p> <p>We prospectively evaluated 100 stage IV NSCLC patients treated with paclitaxel (175 mg/m<sup>2</sup>) and cisplatin (80 mg/m<sup>2</sup>). Malnutrition was assessed using SGA prior treatment. Neutrophil Lymphocyte Ratio (NLR) and the Platelet Lymphocyte Ratio (PLR) were used to determine the presence of systemic inflammatory response (SIR) and were related to the development of toxicity. Toxicity was graded according to NCI CTCAE version 3.0 after two chemotherapy cycles.</p> <p>Results</p> <p>Median age was 58 ± 10 years, 51% of patients were malnourished, 50% had albumin ≤3.0 mg/mL. NLR ≥ 5 was associated with basal hypoalbuminemia (mean ranks, 55.7 vs. 39 p = 0.006), ECOG = 2 (47.2 vs. 55.4 p = 0.026) and PLR ≥ 150 were significantly related with a basal body mass index ≤20 (56.6 vs. 43.5; p = 0.02) and hypoalbuminemia (58.9 vs. 41.3; p = 0.02). Main toxicities observed after 2 cycles of chemotherapy were alopecia (84%), nausea (49%), neuropathy (46%), anemia (33%), lymphopenia (31%), and leukopenia (30%). Patients malnourished and with hypoalbuminemia developed more chemotherapy-induced toxicity overall when compared with those without malnutrition (31 vs 22; <it>p </it>= 0.02) and normal albumin (mean ranks, 62 vs 43; <it>p </it>= 0.002), respectively. Hypoalbuminemia was associated with anemia (56 vs 47; <it>p </it>= 0.05), fatigue (58 vs 46; <it>p </it>= 0.01), and appetite loss (57.1 vs 46.7; <it>p </it>= 0.004) compared with normal albumin. PLR ≥ 150 was related with the development of toxicity grade III/IV (59.27 vs. 47.03 p = 0.008) and anemia (37.9 vs 53.8 p = 0.004).</p> <p>Conclusion</p> <p>SIR parameters were associated with malnutrition, weight loss and hypoalbuminemia. Chemotherapy-induced toxicity in NSCLC patients treated with paclitaxel and cisplatin was associated with malnutrition and hypoalbuminemia. Early nutritional assessment and support might confer beneficial effects.</p
    corecore