5 research outputs found

    Optical Communications Downlink from a 1.5U CubeSat: OCSD Program

    Get PDF
    NASA’s Optical Communications and Sensors Demonstration (OCSD) program and described in previous presentations, were launched in November 2017 and placed in a 450-km circular orbit. Following on-orbit checkouts and preliminary pointing calibration utilizing on-board star trackers, we have demonstrated (at the time of this manuscript submission) communications links up to 100 Mbps with bit error rates near 10-6 without any forward error correction. Further optimization of the vehicle pointing and detection electronics and operating the transmitter at its full power capacity should enable performance improvements and potential for higher data rates

    Flight Operations of Two Rapidly Assembled CubeSats with Commercial Infrared Cameras: The Rogue-Alpha,Beta Program

    Get PDF
    The Aerospace Corporation’s Rogue-alpha, betaprogram, co-funded by the Space and Missile Systems Center’s Development Corps, is a rapid prototyping effort that built and launched two 3-Unit CubeSats equipped with modified commercial IR camera payloads, laser communications and precision pointing capabilities in 18-months. Launched on 2 November 2019, the two spacecraft were released from the ISS Cygnus NG-12 robotic resupply spacecraft on 31 January 2020 into a circular 460-km, 52° inclined orbit. The two Rogue spacecraft are serving as testbeds for studying wide-field-of-view fast-framing imaging, on-orbit stellar calibration techniques for small IR payloads, and associated spacecraft flight operations. Precision pointing is enabled by three star sensors. High data rate sensor observations are enabled by the ultra-compact 200 Mbps lasercom system, which downlinks gigabytes of stored data during a single laser contact, using The Aerospace Corporation’s prototype ground stations located in El Segundo, California. The Rogue-alpha, beta IR sensor is a 1.4 micron band, 640x512 pixel, 28° field of view, InGaAs SWIR camera. It is accompanied by a panchromatic, 10-megapixel, 37° field of view visible context camera. Modes of sensor operation have included: 1) horizon-pointed imaging in all directions relative to the spacecraft orbit (fore, aft, port, and starboard) which is designed to maximize the imaged field of view, 2) point-and-stare imaging, 3) nadir-pointed, and 4) stereo fore-aft pointing using both spacecraft. All of these modes of operation are usually conducted in multi-frame collections at 1-20hz for dozens to thousands of frames. Highlights from the Rogue-alpha, beta sensor Earth remote sensing observation experiments will be presented. These have included impressive video imagery of hurricanes, typhoons, thunderstorms, and high clouds in the intra-tropical convergence zone. Infrared and visible point sources studied include gas flares, wildfires, active volcanos, nighttime lights, and other phenomena, including the first infrared CubeSat observations of space launch upper stages in flight. Stereo cloud imaging observations were also conducted with an aim of better understanding Earth backgrounds from low Earth orbit. Highlights from the CubeSat flight operations experiments include: 1) spacecraft-to-spacecraft boresight alignment of Rogue’s lasercom systems, and 2) metric and radiometric calibration of Rogue’s flight cameras using bright infrared stars. The results from the Rogue-alpha, beta460-km orbit show the exciting possibilities for wide-field-of-view missions from low earth orbit

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The NASA Optical Communication and Sensors Demonstration Program: Preflight Up-date

    Get PDF
    Small, inexpensive, satellite platforms offer opportunities for pathfinder experiments, space qualification of compo-nents and systems, and enhancement of larger assets. The Optical Communication and Sensor Demonstration (OCSD) has become a three CubeSat flight test funded by NASA’s Small Spacecraft Technology Program (SSTP) under the Space Technology Mission Directorate. A 1.5U CubeSat using COTS hardware was designed, fabricated, tested, and delivered for launch. This Pathfinder CubeSat will fly by the fourth quarter of 2015. It will demonstrate proof-of-principle optical communications at a very modest threshold objective data rate of 5 Mb/s from low Earth orbit to a ground station. Two more CubeSats, with potential data rates of up to 500 Mb/s and propulsion, are under construction and will fly in January 2016. These CubeSats will demonstrate improved communications capability and the secondary OCSD goal of demonstrating proximity operations between two identical spacecraft using differ-ential drag, a water vapor thruster, GPS measurements, and a laser rangefinder. The current launch schedule pro-vides one to two months of Pathfinder operation before the final two flight units are delivered. We will attempt to implement lessons learned from the Pathfinder in the final flight units to demonstrate a new “Fly as you fly” para-digm enabled by the significant number of CubeSat launch opportunities available each year

    Initial sequencing and analysis of the human genome

    No full text
    International audienc
    corecore