219 research outputs found
Water resources: future Nile river flows
Climate change is projected to increase annual Nile river flow; importantly, year-to-year variability is also expected to increase markedly. More variable flows could present a challenge for consistent water resource provision in this region
Effects of Explicit Convection on Future Projections of Mesoscale Circulations, Rainfall, and Rainfall Extremes over Eastern Africa
Eastern Africaâs fast-growing population is vulnerable to changing rainfall and extremes. Using the first pan-African climate change simulations that explicitly model the rainfall-generating convection, we investigate both the climate change response of key mesoscale drivers of eastern African rainfall, such as sea and lake breezes, and the spatial heterogeneity of rainfall responses. The explicit model shows widespread increases at the end of the century in mean (~40%) and extreme (~50%) rain rates, whereas the sign of changes in rainfall frequency has large spatial heterogeneity (from â50% to over +90%). In comparison, an equivalent parameterized simulation has greater moisture convergence and total rainfall increase over the eastern Congo and less over eastern Africa. The parameterized model also does not capture 1) the large heterogeneity of changes in rain frequency; 2) the widespread and large increases in extreme rainfall, which result from increased rainfall per humidity change; and 3) the response of rainfall to the changing sea breeze, even though the sea-breeze change is captured. Consequently, previous rainfall projections are likely inadequate for informing many climate-sensitive decisionsâfor example, for infrastructure in coastal cities. We consider the physics revealed here and its implications to be relevant for many other vulnerable tropical regions, especially those with coastal convection
Understanding Intermodel Variability in Future Projections of a Sahelian Storm Proxy and Southern Saharan Warming
Projected changes in the intensity of severe rain events over the North African Sahelâfalling from large mesoscale convective systemsâcannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ÎTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ÎTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warmingâadvectionâcirculation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ÎTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ÎTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ÎTGrad. This new knowledge of ÎTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity
Understanding mechanisms for trends in Sahelian squall lines: Roles of thermodynamics and shear
Squall lines dominate rainfall in the West African Sahel, and evidence suggests they have increased in intensity over recent decades. Stronger wind shear may be a key driver of this trend and could continue to strengthen with climate change. However, global numerical models struggle to capture the role of shear for organised convection, making predictions of changing rainfall intensities in the Sahel uncertain. To investigate the impact of recent and possible future environmental changes, and to isolate thermodynamic effects from shear effects, idealised squall line simulations were initialised with a profile representative of the present day: this profile was then modified using trends from reanalyses and climate projections. Increased shear led to increased storm intensity and rainfall, but the effects of the thermodynamic changes dominated the effects from shear. Simulations initiated with future profiles produced shorterâlived storms, likely due to increased convective inhibition and the absence of largeâscale convergence or synoptic variability in the idealised model. A theoretical model based on the relative inflow of convectively unstable air and moisture was found to predict bulk characteristics of the storms accurately, including mean rain rates and areaâaveraged maximum vertical velocities, explaining the role of shear. However, the model is not a prognostic tool as rainfall is dependent on the storm speed, which remains a free parameter. The study shows the importance of shear to longâterm rainfall trends and highlights the need for climate models to include effects of shear to capture changes in extreme rainfall
Improved climatological precipitation characteristics over West Africa at convection-permitting scales
The West African climate is unique and challenging to reproduce using standard resolution climate models as a large proportion of precipitation comes from organised deep convection. For the first time, a regional 4.5Â km convection permitting simulation was performed on a pan-African domain for a period of 10Â years (1997â2006). The 4.5Â km simulation (CP4A) is compared with a 25Â ĂÂ 40Â km convection-parameterised model (R25) over West Africa. CP4A shows increased mean precipitation, which results in improvements in the mature phase of the West African monsoon but deterioration in the early and late phases. The distribution of precipitation rates is improved due to more short lasting intense rainfall events linked with mesoscale convective systems. Consequently, the CP4A model shows a better representation of wet and dry spells both at the daily and sub-daily time-scales. The diurnal cycle of rainfall is improved, which impacts the diurnal cycle of monsoon winds and increases moisture convergence in the Sahel. Although shortcomings were identified, with implications for model development, this convection-permitting model provides a much more reliable precipitation distribution than its convection-parameterised counterpart at both daily and sub-daily time-scales. Convection-permitting scales will therefore be useful to address the crucial question of how the precipitation distribution will change in the future
High stakes decisions under uncertainty: dams, development and climate change in the Rufiji river basin
The need to stress test designs and decisions about major infrastructure under climate change conditions is increasingly being recognised. This chapter explores new ways to understand andâif possibleâreduce the uncertainty in climate information to enable its use in assessing decisions that have consequences across the water, energy, food and environment sectors. It outlines an approach, applied in the Rufiji River Basin in Tanzania, that addresses uncertainty in climate model projections by weighting them according to different skill metrics; how well the models simulate important climate features. The impact of different weighting approaches on two river basin performance indicators (hydropower generation and environmental flows) is assessed, providing an indication of the reliability of infrastructure investments, including a major proposed dam under different climate model projections. The chapter ends with a reflection on the operational context for applying such approaches and some of the steps taken to address challenges and to engage stakeholders
What Drives the Intensification of Mesoscale Convective Systems over the West African Sahel under Climate Change?
Extreme rainfall is expected to increase under climate change, carrying potential socioeconomic risks. However, the magnitude of increase is uncertain. Over recent decades, extreme storms over the West African Sahel have increased in frequency, with increased vertical wind shear shown to be a cause. Drier midlevels, stronger cold pools, and increased storm organization have also been observed. Global models do not capture the potential effects of lower- to midtropospheric wind shear or cold pools on storm organization since they parameterize convection. Here we use the first convection-permitting simulations of African climate change to understand how changes in thermodynamics and storm dynamics affect future extreme Sahelian rainfall. The model, which simulates warming associated with representative concentration pathway 8.5 (RCP8.5) until the end of the twenty-first century, projects a 28% increase of the extreme rain rate of MCSs. The Sahel moisture change on average follows ClausiusâClapeyron scaling, but has regional heterogeneity. Rain rates scale with the product of time-of-storm total column water (TCW) and in-storm vertical velocity. Additionally, prestorm wind shear and convective available potential energy both modulate in-storm vertical velocity. Although wind shear affects cloud-top temperatures within our model, it has no direct correlation with precipitation rates. In our model, projected future increase in TCW is the primary explanation for increased rain rates. Finally, although colder cold pools are modeled in the future climate, we see no significant change in near-surface winds, highlighting avenues for future research on convection-permitting modeling of storm dynamics
How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model
Current-climate precipitation and temperature extremes have been identified by decision makers in West Africa as among the more impactful weather events causing lasting socioeconomic damage. In this article, we use a plausible future-climate scenario (RCP8.5) for the end of the twenty-first century to explore the relative commonness of such extremes under global warming. The analysis presented considers what a typical day in the future climate will feel like relative to current extrema. Across much of West Africa, we see that the typical future-climate day has maximum and minimum temperatures greater than 99.5% of currently experienced values. This finding exists for most months but is particularly pronounced during the Boreal spring and summer. The typical future precipitation event has a daily rainfall rate greater than 95% of current storms. These findings exist in both a future scenario model run with and without parameterised convection, and for many of the Coupled Model Inter-comparison Project version 5 ensemble members. Additionally, agronomic monsoon onset is projected to occur later and have greater inter-annual variability in the future. Our findings suggest far more extreme conditions in future climate over West Africa. The projected changes in temperature and precipitation could have serious socioeconomic implications, stressing the need for effective mitigation given the potential lack of adaptation pathways available to decision makers
Implications of improved representation of convection for the East Africa water budget using a convection-permitting model
The precipitation and diabatic heating resulting from moist convection make it a key component of the atmospheric water budget in the tropics. With convective parametrisation being a known source of uncertainty in global models, convection-permitting (CP) models are increasingly being used to improve understanding of regional climate. Here, a new 10-year CP simulation is used to study the characteristics of rainfall and atmospheric water budget for East Africa and the Lake Victoria basin. The explicit representation of convection leads to a widespread improvement in the intensities and diurnal cycle of rainfall when compared with a parametrised simulation. Differences in large-scale moisture fluxes lead to a shift in the mean rainfall pattern from the Congo to Lake Victoria basin in the CP simulation - highlighting the important connection between local changes in the representation of convection and larger scale dynamics and rainfall. Stronger lake-land contrasts in buoyancy in the CP model lead to a stronger nocturnal land breeze over Lake Victoria, increasing evaporation and moisture flux convergence (MFC), and likely unrealistically high rainfall. However, for the mountains east of the lake, the CP model produces a diurnal rainfall cycle much more similar to satellite estimates, which is related to differences in the timing of MFC. Results here demonstrate that, whilst care is needed regarding lake forcings, a CP approach offers a more realistic representation of several rainfall characteristics through a more physically-based realisation of the atmospheric dynamics around the complex topography of East Africa
Recommended from our members
Selecting CMIP5 GCMs for downscaling over multiple regions
The unprecedented availability of 6-hourly data from a multi-model GCM ensemble in the CMIP5 data archive presents the new opportunity to dynamically downscale multiple GCMs to develop high-resolution climate projections relevant to detailed assessment of climate vulnerability and climate change impacts. This enables the development of high resolution projections derived from the same set of models that are used to characterise the range of future climate changes at the global and large-scale, and as assessed in the IPCC AR5. However, the technical and human resource required to dynamically-downscale the full CMIP5 ensemble are significant and not necessary if the aim is to develop scenarios covering a representative range of future climate conditions relevant to a climate change risk assessment. This paper illustrates a methodology for selecting from the available CMIP5 models in order to identify a set of 8â10 GCMs for use in regional climate change assessments. The selection focuses on their suitability across multiple regionsâSoutheast Asia, Europe and Africa. The selection (a) avoids the inclusion of the least realistic models for each region and (b) simultaneously captures the maximum possible range of changes in surface temperature and precipitation for three continental-scale regions. We find that, of the CMIP5 GCMs with 6-hourly fields available, three simulate the key regional aspects of climate sufficiently poorly that we consider the projections from those models âimplausibleâ (MIROC-ESM, MIROC-ESM-CHEM, and IPSL-CM5B-LR). From the remaining models, we demonstrate a selection methodology which avoids the poorest models by including them in the set only if their exclusion would significantly reduce the range of projections sampled. The result of this process is a set of models suitable for using to generate downscaled climate change information for a consistent multi-regional assessment of climate change impacts and adaptation
- âŠ