756 research outputs found

    The Emigrant and Sportsman in Canada

    Get PDF
    https://commons.und.edu/settler-literature/1155/thumbnail.jp

    Modeling Scramjet Supersonic Combustion Via Eddy Dissipation Model

    Get PDF
    Scramjet technology has gained considerable interest in multi-stage to orbit design concepts due to its reusability and high specific impulse at high-Mach regimes. The aim of the present work is to introduce Reynolds Averaged Navier-Stokes CFD calculations in the design phase of scramjet vehicles and increase the fidelity of engine performance assessment. The turbulence-chemistry interaction is described by the Eddy Dissipation Model (EDM) introduced by Magnussen and Hjertager, which assumes that turbulent motions and not chemistry is the main driver in the rate of combustion. The use of the EDM is explored by application to three hydrogen fueled scramjet test cases. The model requires constants to be prescribed, which have found to be case dependent. Optimal values for the cases simulated are discussed along with appropriateness of the model for general design simulations. The advantage in computational cost is demonstrated by comparison with a no-model finite-rate chemistry approach

    HST ultraviolet spectral energy distributions for three ultraluminous infrared galaxies

    Get PDF
    We present HST Faint Object Camera ultraviolet (230 nm and 140 nm) images of three ultraluminous infrared galaxies (ULIG: L_ir > 10^12 L_sun) selected from the IRAS Revised Bright Galaxy Sample. The purpose is to estimate spectral energy distributions (SEDs) to facilitate the identification of similar objects at high redshift in deep optical, infrared, and submm surveys. All three galaxies (VII Zw031 = IRAS F12112+0305, and IRAS F22491-1808) were well detected at 230 nm. Two of the three were marginally detected at 140 nm. The fluxes, together with ground-based optical and infrared photometry, are used to compute SEDs over a wide wavelength range. The measured SEDs drop from the optical to the ultraviolet, but the magnitude of the drop ranges from a factor of ~3 in IRAS F22491-1808 to a factor of ~100 in VIIZw031. This is most likely due to different internal extinctions. Such an interpretation is also suggested by extrapolating to ultraviolet wavelengths the optical internal extinction measured in VIIZw031. K-corrections are calculated to determine the colors of the sample galaxies as seen at high redshifts. Galaxies like VIIZw031 have very low observed rest-frame UV fluxes which means that such galaxies at high redshift will be extremely red or even missing in optical surveys. On the other hand, galaxies like IRAS F12112+0305 and IRAS F22491-1808, if seen at high redshift, would be sufficiently blue that they would not easily be distinguished from normal field galaxies, and therefore, identified as ULIGs. The implication is then that submillimeter surveys may be the only means of properly identifying the majority of ULIGs at high redshift.Comment: AJ in press, TeX, 23 pages, 7 tab, 17 figs available also (at higher resolution) from http://www.ast.cam.ac.uk~trentham/ufigs.htm

    Evaluating the spatial transferability and temporal repeatability of remote sensing-based lake water quality retrieval algorithms at the European scale:a meta-analysis approach

    Get PDF
    Many studies have shown the considerable potential for the application of remote-sensing-based methods for deriving estimates of lake water quality. However, the reliable application of these methods across time and space is complicated by the diversity of lake types, sensor configuration, and the multitude of different algorithms proposed. This study tested one operational and 46 empirical algorithms sourced from the peer-reviewed literature that have individually shown potential for estimating lake water quality properties in the form of chlorophyll-a (algal biomass) and Secchi disc depth (SDD) (water transparency) in independent studies. Nearly half (19) of the algorithms were unsuitable for use with the remote-sensing data available for this study. The remaining 28 were assessed using the Terra/Aqua satellite archive to identify the best performing algorithms in terms of accuracy and transferability within the period 2001–2004 in four test lakes, namely VĂ€nern, VĂ€ttern, Geneva, and Balaton. These lakes represent the broad continuum of large European lake types, varying in terms of eco-region (latitude/longitude and altitude), morphology, mixing regime, and trophic status. All algorithms were tested for each lake separately and combined to assess the degree of their applicability in ecologically different sites. None of the algorithms assessed in this study exhibited promise when all four lakes were combined into a single data set and most algorithms performed poorly even for specific lake types. A chlorophyll-a retrieval algorithm originally developed for eutrophic lakes showed the most promising results (R2 = 0.59) in oligotrophic lakes. Two SDD retrieval algorithms, one originally developed for turbid lakes and the other for lakes with various characteristics, exhibited promising results in relatively less turbid lakes (R2 = 0.62 and 0.76, respectively). The results presented here highlight the complexity associated with remotely sensed lake water quality estimates and the high degree of uncertainty due to various limitations, including the lake water optical properties and the choice of methods

    Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Get PDF
    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes

    Turbulence chemistry interaction via eddy dissipation model for scramjet analysis and design

    Get PDF
    This paper considers the Eddy Dissipation Model to address the combustion process inside scramjet engines designed to operate at high flight Mach numbers. The aim is to demonstrate the most appropriate use of the model for design purposes. To this end, two hydrogen-fueled experimental scramjet configurations with different fuel injection approaches are studied numerically. In the case of parallel fuel injection, it is demonstrated that relying on estimates of ignition delay from a one-dimensional kinetics program can greatly improve the use of the EDM. In the second case, the transverse injection of hydrogen resulted in an overall good agreement of the model with experimental pressure traces except in the vicinity of the injection location. Overall, the EDM appears to be a suitable tool for scramjet combustor design incorporating a parallel or transverse fuel injection mechanism

    A lithostratigraphical and chronological study of Oligocene-Miocene sequences on eastern King George Island, South Shetland Islands (Antarctica) and correlation of glacial episodes with global isotope events

    Get PDF
    King George Island (South Shetland Islands, Antarctic Peninsula) is renowned for its terrestrial palaeoenvironmental record, which includes evidence for potentially up to four Cenozoic glacial periods. An advantage of the glacigenic outcrops on the island is that they are associated with volcanic formations that can be isotopically dated. As a result of a new mapping and chronological study, it can now be shown that the published stratigraphy and ages of many geological units on eastern King George Island require major revision. The Polonez Glaciation is dated as c. 26.64 ± 1.43 Ma (Late Oligocene (Chattian Stage)) and includes the outcrops previously considered as evidence for an Eocene glacial ('Krakow Glaciation'). It was succeeded by two important volcanic episodes (Boy Point and Cinder Spur formations) formed during a relatively brief interval (< 2 Ma), which also erupted within the Oligocene Chattian Stage. The Melville Glaciation is dated as c. 21–22 Ma (probably 21.8 Ma; Early Miocene (Aquitanian Stage)), and the Legru Glaciation is probably ≀ c. 10 Ma (Late Miocene or younger). As a result of this study, the Polonez and Melville glaciations can now be correlated with increased confidence with the Oi2b and Mi1a isotope zones, respectively, and thus represent major glacial episodes
    • 

    corecore