6 research outputs found

    Plk1 overexpression induces chromosomal instability and suppresses tumor development

    Get PDF
    Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.We are indebted to Stephen Taylor for the Sgo1 antibody. We thank Simone Kraut, Jessica Steiner, and the DKFZ light microscopy unit for excellent technical assistance. The results published here are in part based on data generated by TCGA pilot project (https://cancergenome.nih.gov/established by the NCI and the National Human Gen- ome Research Institute. The data were retrieved through dbGaP authorization (accession no. phs000178.v9.p8). S.V.V. was supported by the Marie Curie Network Ploidynet, funded by the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement #316964. L.S. is supported by a postdoctoral fellowship from Funda- cion Ramon Areces. Work in the R.S. laboratory was supported by an ERC starting grant (#281614), Marie Curie PCIG09-GA-2011 –293745 and the Howard Hughes Medical Institute. G.d.C. is funded by AECC Scientific Foundation (LABAE16017DECA). Work in the M.M. laboratory was supported by grants from the MINECO (SAF2015 –69920-R cofunded by ERDF-EU), Worldwide Cancer Research (WCR no. 150278), and Comunidad de Madrid (iLUNG-CM; B2017/BMD3884). The CNIO is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0510).S

    Is aneuploidy deciding your fate?

    No full text

    Acquisition of chromosome instability is a mechanism to evade oncogene addiction

    No full text
    Abstract Chromosome instability (CIN) has been associated with therapeutic resistance in many cancers. However, whether tumours become genomically unstable as an evolutionary mechanism to overcome the bottleneck exerted by therapy is not clear. Using a CIN model of Kras‐driven breast cancer, we demonstrate that aneuploid tumours acquire genetic modifications that facilitate the development of resistance to targeted therapy faster than euploid tumours. We further show that the few initially chromosomally stable cancers that manage to persist during treatment do so concomitantly with the acquisition of CIN. Whole‐genome sequencing analysis revealed that the most predominant genetic alteration in resistant tumours, originated from either euploid or aneuploid primary tumours, was an amplification on chromosome 6 containing the cMet oncogene. We further show that these tumours are dependent on cMet since its pharmacological inhibition leads to reduced growth and increased cell death. Our results highlight that irrespective of the initial CIN levels, cancer genomes are dynamic and the acquisition of a certain level of CIN, either induced or spontaneous, is a mechanism to circumvent oncogene addiction

    Negative Selection and Chromosome Instability Induced by Mad2 Overexpression Delay Breast Cancer but Facilitate Oncogene-Independent Outgrowth

    Get PDF
    Chromosome instability (CIN) is associated with poor survival and therapeutic outcome in a number of malignancies. Despite this correlation, CIN can also lead to growth disadvantages. Here, we show that simultaneous overexpression of the mitotic checkpoint protein Mad2 with KrasG12D or Her2 in mammary glands of adult mice results in mitotic checkpoint overactivation and a delay in tumor onset. Time-lapse imaging of organotypic cultures and pathologic analysis prior to tumor establishment reveals error-prone mitosis, mitotic arrest, and cell death. Nonetheless, Mad2 expression persists and increases karyotype complexity in Kras tumors. Faced with the selective pressure of oncogene withdrawal, Mad2-positive tumors have a higher frequency of developing persistent subclones that avoid remission and continue to grow

    Bibliografi över arbeten som producerats av uppsalaslavister under året 1977

    Get PDF
    PLK1 is a mitotic regulator overexpressed in cancer; however, whether this overexpression causally contributes to tumor development is unclear. Here the authors produce an inducible mouse model to overexpress PLK1 and show that actually this can act as a tumor suppressor by perturbing mitotic progression and cytokinesis
    corecore