20 research outputs found

    Targeting HER2-AXL heterodimerization to overcome resistance to HER2 blockade in breast cancer

    No full text
    Anti-HER2 therapies have markedly improved prognosis of HER2-positive breast cancer. However, different mechanisms play a role in treatment resistance. Here, we identified AXL overexpression as an essential mechanism of trastuzumab resistance. AXL orchestrates epithelial-to-mesenchymal transition and heterodimerizes with HER2, leading to activation of PI3K/AKT and MAPK pathways in a ligand-independent manner. Genetic depletion and pharmacological inhibition of AXL restored trastuzumab response in vitro and in vivo. AXL inhibitor plus trastuzumab achieved complete regression in trastuzumab-resistant patient-derived xenograft models. Moreover, AXL expression in HER2-positive primary tumors was able to predict prognosis. Data from the PAMELA trial showed a change in AXL expression during neoadjuvant dual HER2 blockade, supporting its role in resistance. Therefore, our study highlights the importance of targeting AXL in combination with anti-HER2 drugs across HER2-amplified breast cancer patients with high AXL expression. Furthermore, it unveils the potential value of AXL as a druggable prognostic biomarker in HER2-positive breast cancer

    The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene

    No full text
    A subset of HER2+ breast cancer patients manifest clinical resistance to trastuzumab. Recently, miR-26a and miR-30b have been identified as trastuzumab response regulators, and their target gene CCNE2 seems to play an important role in resistance to trastuzumab therapy. Cell viability was evaluated in trastuzumab treated HER2+ BT474 wt (sensitive), BT474r (acquired resistance), HCC1954 (innate resistance), and MDA-MB-231 (HER2-) cell lines, and the expression of miR-26a, miR-30b, and their target genes was measured. BT474 wt cell viability decreased by 60% and miR-26a and miR-30b were significantly overexpressed (~3-fold, p = 0.003 and p = 0.002, respectively) after trastuzumab treatment, but no differences were observed in resistant and control cell lines. Overexpression of miR-30b sensitized BT474r cells to trastuzumab (p = 0.01) and CCNE2, was significantly overexpressed after trastuzumab treatment in BT474r cells (p = 0.032), but no significant changes were observed in sensitive cell line. When CCNE2 was silenced BT474r cell sensitivity to trastuzumab increased (p = 0.03). Thus, the molecular mechanism of trastuzumab action in BT474 cell line may be regulated by miR-26a and miR-30b and CCNE2 overexpression might play an important role in acquired trastuzumab resistance in HER2+ breast cancer given that resistance was diminished when CCNE2 was silenced

    Generation, characterization, and maintenance of trastuzumab-resistant HER2+ breast cancer cell lines

    No full text
    Trastuzumab became the therapy of choice for patients with HER2-positive breast cancer in 1998, and it has provided clinical benefit ever since. However, a significant percentage of patients show primary resistance to trastuzumab at diagnosis, and most patients with metastatic disease that initially respond to trastuzumab eventually progress (acquired resistance). Consequently, there is an urgent need to improve our knowledge of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. We generated new cell lines derived from BCCL through extended exposure to trastuzumab. Drug-conditioned populations were authenticated for their molecular profile and their resistance rate was determined. Heterogeneous HER2 amplification was observed across most of the BCCLs, ranging from cells without HER2 amplification to elevated HER2 gene copy numbers in others. Using a phospho-antibody array we analyzed the status of kinase receptors and effectors from different cellular pathways. This revealed that HER2, AKT, and S6RP presented high phosphorylation levels with specific variations between sensitive and resistant populations. In addition, differences in phosphorylation levels for several of those pathways targets were found between sensitive and resistant lines. Furthermore, a biochemical study characterized patterns of molecular alterations similar to those commonly described in breast cancer. Finally, a subcutaneous xenograft murine model confirmed the resistance to trastuzumab of the established cell line. We conclude that these resistant BCCLs can be a valuable tool to gain insight into the mechanisms of acquisition of trastuzumab resistance

    Intogen - Catalog of driver mutations

    No full text
    Collection of 28 tab-separated values (TSV) files.This database contains the results of the driver analysis performed by the Cancer Genome Interpreter across 6,792 exomes of a pan-cancer cohort of 28 tumor types. Validated oncogenic mutations are identified according to the state-of-the-art clinical and experimental data, whereas the effect of the mutations of unknown significance is predicted by the OncodriveMUT method

    TCGI prescription

    No full text
    Software: Anaconda Python 3.5CGI drug prescription assigns targeted drugs to a tumor, based on its genomic alterations, according different levels of evidence (from pre-clinical assays to clinical guidelines)

    Targeted therapy modulates the secretome of cancer-associated fibroblasts to induce resistance in HER2-positive breast cancer

    No full text
    The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer

    Interplay between Natural killer cells and Anti-HER2 antibodies: Perspectives for breast cancer immunotherapy

    No full text
    Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.The authors are supported by coordinated research projects from Fundación Española contra el Cåncer (GCB15152947MELE) and Proyecto Integrado de Excelencia ISCIII (PIE 2015/00008); ML-B and AM are supported by Worldwide Cancer Research Foundation (15-1146); ML-B by Plan Estatal I + D Retos (SAF2013-49063-C2-1-R; SAF2016-80363-C2-1-R), Spanish Ministry of Economy and Competitiveness (MINECO, FEDER); JA is supported by ISCiii/FEDER (PI15/00146 and CIBERONC) and by Generalitat de Catalunya (2014 SGR 740)

    OncodriveMUT

    No full text
    INSTALL # Create a new Anaconda python environment with all the required dependencies condacreate−cbioconda−cbbglab−noncodrivemutpython=3.5numpy=1.11pandas=0.17colorama=0.3agorequests=2.11pytabix=0.1itab=0.9bgconfig=0.3 conda create -c bioconda -c bbglab -n oncodrivemut python=3.5 numpy=1.11 pandas=0.17 colorama=0.3 ago requests=2.11 pytabix=0.1 itab=0.9 bgconfig=0.3 source activate oncodrivemut pip install oncodrivemut-1.0.0.tar.gz --no-deps # The first time that you run OncodriveMUT it will download all the required datasets using bgdata (https://bitbucket.org/bgframework/bgdata) # by default bgdata downloads all the files at ~/.bgdata check the documentation if you can to change this behaviour oncodrivemut -h usage: oncodrivemut [-h] -i INPUT_FILE [-o OUTPUT_FOLDER] [-t TUMOR_TYPE] [-c CONFIG_FILE] [-s SAMPLE] [--force] [--debug] [--extended] optional arguments: -h, --help show this help message and exit -i INPUT_FILE, --input INPUT_FILE Variants file -o OUTPUT_FOLDER, --output OUTPUT_FOLDER Output folder. Default to regions file name without extensions. -t TUMOR_TYPE, --tumor TUMOR_TYPE Specify the tumor type of the sample(s) under analysis -c CONFIG_FILE, --config CONFIG_FILE Configuration file. Default to 'oncodrivemut.conf' in the current folder if exists or to ~/.bbglab/oncodrivemut.conf if not. -s SAMPLE, --sample SAMPLE Default identifier of the sample --force Run the commands and overwrite results although output files already exist --debug Show more progress details --extended Computational expensive metrics are also calculated for non coding mutationsBioinformatics method to identify individual driver mutations

    Interplay between Natural killer cells and Anti-HER2 antibodies: Perspectives for breast cancer immunotherapy

    No full text
    Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists.The authors are supported by coordinated research projects from Fundación Española contra el Cåncer (GCB15152947MELE) and Proyecto Integrado de Excelencia ISCIII (PIE 2015/00008); ML-B and AM are supported by Worldwide Cancer Research Foundation (15-1146); ML-B by Plan Estatal I + D Retos (SAF2013-49063-C2-1-R; SAF2016-80363-C2-1-R), Spanish Ministry of Economy and Competitiveness (MINECO, FEDER); JA is supported by ISCiii/FEDER (PI15/00146 and CIBERONC) and by Generalitat de Catalunya (2014 SGR 740)

    Cancer bioMarkers database

    No full text
    1 TSV (tab-separated values) fileThe cancer bioMarkers database is curated and maintained by several clinical and scientific experts in the field of precision oncology supported by the European Union’s Horizon 2020 funding. This database is currently being integrated with knowledge databases of other institutions in a collaborative effort of the Global Alliance for Genomics and Health
    corecore